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15:01 There’s no excuse for not knowing.

Neighbors, please join me in reading this six-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Montréal
and Las Vegas.

If you are missing the first fifteen issues, we sug-
gest asking a neighbor who picked up a copy of the
first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, or the fifteenth
release in Canberra, Heidelberg, or Miami.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo15.pdf. It is a valid PDF
document and a ZIP file of the relevant source code.
Those of you who have laser projection equipment
supporting the ILDA standard will find that this is-
sue can be handily projected by your laser beams.

At BSides Knoxville in 2015, Brandon Wilson
gave one hell of a talk on how he dumped the car-
tridge of Pier Solar, a modern game for the Sega
Genesis; the lost lecture was not recorded and the
slides were never published. After others failed with
traditional cartridge dumping techniques, Brandon
jumped in to find that the cartridge only provides
the first 32 kB until an unlock sequence is executed,
and that it will revert to the first 32 KB if it ever
detects that the CPU is not executing from ROM.
On page 5, Brandon will explain his nifty tricks for
avoiding these protection mechanisms, armed with
only the right revision of Sega CD, a serial cable,
and a few cheat codes for the Game Genie.

Pastor Laphroaig is back on page 13 with a ser-
mon on alternators, Studebakers, and bug hunting
in general. This allegory of a broken Ford might
teach you a thing or two about debugging, and why
all the book learning in the world won’t match the
experience of repairing your own car.

Page 16 by Saumil Shah reminds us of those fine
days when magazines would include type-in code.
This particular example is one that Saumil authored
twenty-five years ago, a stub that produces a self-
printing COM file for DOS.

Don A. Bailey presents on page 17 an introduc-
tion to writing shellcode for the new RISC-V ar-
chitecture, a modern RISC design which might not
yet have the popularity of ARM but has much finer
prospects than MIPS.

Our longest article for this issue, page 25
presents the monumental task of cracking Gumball
for the Apple ][. Neighbors 4am and Peter Fer-
rie spent untold hours investigating every nook and
cranny of this game, and their documentation might
help you to preserve a protected Apple game of your
own, or to craft some deviously clever 6502 code to
stump the finest of reverse engineers.

Evan Sultanik has been playing around with the
internals of Git, and on page 60 he presents a PDF
which is also a Git repository containing its own
source code.

3



Rob Graham is our most elusive author, having
promised an article for PoC‖GTFO 0x04 that finally
arrived this week. On page 66 he will teach you how
to write Ethernet card drivers in userland that never
switch back to the kernel when sending or receiving
packets. This allows for incredible improvements
to speed and drastically reduced memory require-
ments, allowing him to portscan all of /0 in a single
sweep.

Ryan Speers and Travis Goodspeed have
been toying around with MIPS anti-emulation
techniques, which this journal last covered in
PoC‖GTFO 6:6 by Craig Heffner. This new tech-
nique, found on page 76, involves abusing the real
behavior of a branch-delay slot, which is a bit more
complicated than what you might remember from
your Hennessy and Patterson textbook.

Page 82 describes how BSDaemon and NadavCH
reproduced the results of the Gynvael Coldwind’s
and jur00’s Pwnie-winning 2013 paper on race con-
ditions, using Intel’s SAE tracer to not just verify
the results, but also to provide new insights into how
they might be applied to other problems.

Chris Domas, who the clever among you remem-
ber from his Movfuscator, returns on page 87 to
demonstrate that X86 is Turing-complete without
data fetches.

Tobias Ospelt shares with us a nifty little tale
on page 89 about the Java Key Store (JKS) file for-
mat, which is the default key storage method for
both Java and Android. Not content with a simple
proof of concept, Tobias includes a fully functional
patch against Hashcat to properly crack these files
in a jiffy.

There’s a trick that you might have fallen prey
to: sometimes there’s a perfectly innocent thumb-
nail of an image, but when you click on it to view
the full image, you are hit with different graphics
entirely. On page 97, Hector Martin presents one
technique for generating these false thumbnail im-
ages with gAMA chunks of a PNG file.

On page 100, the last page, we pass around the
collection plate. Our church has no interest in cash
or wooden nickels, but we’d love your donation of a
nifty reverse engineering story. Please send one our
way.
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15:02 Pier Solar and the Great Reverser
by Brandon L. Wilson

Hello everyone!
I’m here to talk about dumping the ROM from

one of the most secure Sega Genesis game ever cre-
ated.

This is a story about the unusual, or even crazy
techniques used in reverse engineering a strange tar-
get. It demonstrates that if you want to do some-
thing, you don’t have to be the best or the most
qualified person to do it—you should do what you
know how to do, whatever that is, and keep at it
until it works, and eventually it will pay off.

First, a little background on the environment
we’re talking about here. For those who don’t know,
the Sega Genesis is a cartridge-based, 16-bit game
console made by Sega and released in the US in
1989. In Europe and Japan, it was known as the
Sega Mega Drive.

As you may or may not know, there were three
different versions of the Genesis. The Model 1 Gen-
esis is on the left of Figure 1. Some versions of this
model have an extension port, which is actually just
a third controller port. It was originally intended
for a modem add-on, which was later scrapped.

Some versions of the Model 1 (and all of the
Model 2 devices) started to include a cartridge pro-
tection mechanism called the TMSS, or TradeMark
Security System. Basically this was just some extra
logic to lock up some of the internal Genesis hard-
ware if the word “SEGA” didn’t appear at a certain
location in the ROM and if the ASCII bytes repre-
senting “S”, “E”, “G”, “A” weren’t written to a certain
hardware register. Theoretically only people with
official Sega documentation would know to put this
code in their games, thereby preventing unlicensed
games, but that of course didn’t last long

And then there’s the Model 3 of my childhood
living room, which generally sucked. It doesn’t sup-
port the Sega CD, Game Genie, or any other inter-
esting accessories.

There was also a not-as-well-known CD add-on
for the Genesis called the Sega CD, or the Mega
CD in Europe and Japan, released in 1992. It al-
lowed for slightly-nicer-looking CD-based games as
an attempt to extend the Genesis’ life, but like many
other attempts to do so, that didn’t really work out.

Sega CD has its own BIOS and Motorola 68k
processor, which gets executed if you don’t have a
cartridge in the main slot on top. That way you
can still play all your old Genesis games, but if you
didn’t have one of those games inserted, it would
boot off the Sega CD BIOS and then whatever CD
you inserted.

There were two versions of it, the first one was
shaped to fit the Model 1 Genesis, and while the
second was modeled for the shape of the Model 2
Genesis, although either would work on the other
Genesis. The Model 1 is rare and prone to failure, so
it’s much more difficult to find. I have the Model 2.

So finally we get to the game itself, a game called
Pier Solar. It was released in 2010 and is a “home-
brew” game, which means it was programmed by a
bunch of fans of the Genesis, not in any way licensed
by Sega. Rather than just playing it in an emula-
tor, they took the time to produce an actual plastic
cartridge just like real games, make the plastic case
for it, nice printed manual, everything just as if it
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were a real game.
It’s unique in that it is the only game ever to

use the Sega CD add-on for an enhanced soundtrack
while you’re playing the game, and it has what they
refer to as a “high-density” cartridge, which means
it has an 8MB ROM, larger than any Genesis game
ever made.

It’s also unique in that its ROM had never been
successfully dumped by anyone, preventing folks
from playing it on an emulator. The lack of a ROM
dump was not from lack of trying, however.

Taking apart the cartridge, you can see that
they’re very, very protective of something. They
put some sort of black epoxy over the most interest-
ing parts of the board, to prevent analysis or direct
dumping of what is almost certainly flash memory.

Since they want to protect this, it’s our obliga-
tion to try and understand what it is and, if neces-
sary, defeat it. I can’t help it; I see something that
someone put a lot of effort into protecting, and I
just have to un-do it.

I have no idea how to get that crud off, and I
have to assume that since they put it on there, it’s
not easy to remove. We have to keep in mind, this
game and protection were created by people with a
long history of disassembling Genesis ROMs, writ-
ing Genesis emulators, and bypassing older forms of
copy protection that were used on clones and pirate
cartridges. They know what people are likely to try
in order to dump it and what would keep it secure
for a long time.

So we’re going to have to get creative to dump
this ROM.

There are two methods of dumping Sega Genesis
ROMs. The first would be to use a device dedicated
to that purpose, such as the Retrode. Essentially
it pretends to be a Sega Genesis and retrieves each
byte of the ROM in order until it has it all.

Unfortunately, when other people applied this to
the 8MB Pier Solar, they reported that it just pro-
duces the same 32KB over and over again. That’s
obviously not right, so they must have some hard-
ware under that black crud that ensures it’s actually
running in a Sega Genesis.

So, we turn to the other main method of dump-
ing Genesis ROMs, which involves running a pro-
gram on the Genesis itself to read the inserted car-
tridge’s data and output it through one of the con-
troller ports, which as I mentioned before is actually
just a serial port. The people with the ability to do
this also reported the same 32KB mirrored over and
over again, so that doesn’t work either.

Where’s the rest of the ROM data? Well, let’s
take a step back and think about how this works.
When we do a little Googling, we find that “large”
ROMs are not a new thing on the Genesis. Plenty
of games would resort to tricks to access more data
than the Genesis could normally.

Figure 1. From left to right, Sega Genesis models 1, 2, and 3.
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The system only maps four megabytes of car-
tridge memory, probably because Sega figured, “-
Four megs is enough ROM for anybody!” So it’s
impossible for it to directly reference memory be-
yond this region. However some games, such as Su-
per Street Fighter 2, are actually larger than that.
That game in particular is five megabytes.

They get access to the rest of the ROM by using
a really old trick called bank switching. Since they
know they can only address 4MB, they just change
which 4MB is visible at any one time, using external
hardware in the cartridge. That external hardware
is called a memory mapper, because it “maps” vari-
ous sections of the ROM into the addressable area.
It’s a poor man’s MMU.

So the game itself can communicate with the car-
tridge and tell the mapper “Hey, I need access to part
of that last megabyte. Put it at address 0x300000
for me.” When you access the data at 0x300000,
you’re really accessing the data at, say, 0x400000,
which would normally be just outside of the address-
able range.

0x000000

0x300000

0x380000

0x3fffff

All this is documented online, of course. I found
it by Googling about Genesis homebrew and pro-
gramming your own games.

So where does this memory mapper live? It’s in
the game cartridge itself. Since the game runs from
the Genesis CPU, it needs a way to communicate
with the cartridge to tell it what memory to map
and where.

All Genesis I/O is memory-mapped, meaning
that when you read from or write to a specific mem-
ory address, something happens externally. When
you write to addresses 0xA130F3 through 0xA130FF,
the cartridge hardware can detect that and take
some kind of action. So for Super Street Fighter
2, those addresses are tied to the memory map-
per hardware, which swaps in blocks of memory as
needed by the game.

Pier Solar does the same thing, right? Not ex-
actly; loading up the first 32KB in IDA Pro reveals
no reads or writes here, nor to anywhere else in the
0xA130xx range for that matter. So now what?

Well, and this is something important that we
have to keep in mind, if the game’s code can access
all the ROM data, then so can our code. Right? If
they can do it, we can do it.

– — — – — — — — – — –
So the question becomes, how do we run code on

a Sega Genesis? The same way others tried dump-
ing the ROM—through what’s called the Sega CD
transfer cable. This is an easy-to-make cable linking
a PC’s parallel port with one of the Genesis’ con-
troller ports, which as I said before is just a serial
port. There are no resistors, capacitors, or anything
like that. It’s literally just the parallel port connec-
tor, a cut-up controller cable, and the wire between
them. The cable pinout and related software are
publicly available online.1

As I mentioned before, while the Sega CD is at-
tached, the Genesis boots from the top cartridge
slot only if a game is inserted. Otherwise, it uses
the BIOS to boot from the CD.

Since they weren’t too concerned with CD piracy
way back in 1992, there is no protection at all
against simply burning a CD and booting it. We
burn a CD with a publicly-available ISO of a Sega
CD program that waits to receive a payload of code
to execute from a PC via the transfer cable. That
gives us a way of writing code on a PC, transferring
it to a Sega Genesis + Sega CD, running it, and
communicating back and forth with a PC. We now

1unzip pocorgtfo15.pdf comcable11.zip
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have ourselves a framework for dumping the ROM.
Great, we found some documentation online

about how to send code to a Genesis and execute
it, now what?

Well, let’s start with trying to understand what
code for this thing would even look like. Wikipedia
tells us that it has two processors. The main pro-
cessor is a Motorola 68000 CPU running at 7.6MHz,
and which can directly access the other CPU’s
RAM.

The second CPU is a Zilog Z80 running at 4MHz,
whose sole purpose is to drive the Yamaha YM2612
FM sound chip. The Z80 has its own RAM, which
can be reset or controlled by the main Motorola
68000. It also has the ability to access cartridge
ROM—so typically a game would play sound by
transferring over to the Z80’s RAM a small program
that reads sound data from the cartridge and dumps
it to the Yamaha sound chip. So when the game
wanted to play a sound, the Motorola 68k would re-
set the Z80 CPU, which would start executing the
Z80 program and playing the sound.

So anyway, combined that’s 72KB of RAM:
64KB for the 68k and 8KB for the Z80.

Memory MAP
0X000000

0X400000

0Xa00000

0Xa10000

0Xc00000

0Xff0000

0Xffffff

Cartridge
ROM/RAM

reserved

z80 addressing
space

I/O

reserved

68000 RAM

0X0000

0X2000

0X4000

0X8000

0X10000

sound RAM

reserved

reserved

68000
memory bank

0Xa10002-0Xa10019
Controers

Documentation also tells us the memory map of
the Genesis. The first part we’ve already covered,
that we can access up to 0x400000, or 4MB, of the
cartridge memory. The next useful area starts at
0xA00000, which is where you would read from or
write to the Z80’s RAM.

After that is the most important area, starting
at 0xA10000, which is where all the Genesis hard-
ware is controlled. Here we find the registers for
manipulating the two controller ports, and the area
I mentioned earlier about communicating directly
with the hardware in the cartridge.

We also have 64KB of Motorola 68k RAM, start-
ing at address 0xFF0000. This should give you an
idea of what code would look like, essentially read-
ing from and writing to a series of memory mapped
I/O registers.

Reports online are that the standard Sega CD
transfer cable ROM dumping method doesn’t work,
but since we have the source code to it, let’s go ahead
and try it ourselves. To do that, I needed an older
Genesis and Sega CD. I went to a flea market and
picked up a Model 1 Sega Genesis and Model 2 Sega
CD for a few dollars, then soldered together a trans-
fer cable.

We now have the Sega Genesis attached to the
Sega CD and our boot CD inserted, we then cover
up the “cartridge detect” pin with tape, so that it
won’t detect an inserted cartridge. It will boot to
the Sega CD.

As the system turns on, the Sega CD and then
our burned boot CD starts up. Then the ROM
dumping program is transferred over from the PC
and executed on the Genesis.

The dump is transferred back to the PC via the
transfer cable. We take a look at it in a hex editor,
but the infernal thing is still mirrored.

Why is this happening? Well, we’re reading the
data off the cartridge using the Genesis CPU, the
same way the game runs, so maybe the cartridge
hardware requires a certain series of instructions to
execute first? I mean, a certain set of values might
need to be written to a certain address, or a certain
address might need to be read.

If that’s the case, maybe we should let the game
boot as much as possible before we try the dump.
But, if the game has booted, we’re going to need to
steal control away from it, which means we need to
change how it runs.
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Enter the Game Genie, which you might remem-
ber from when you were a kid. You’d plug your
game into the cartridge slot on top of the Game Ge-
nie, then put that in your Genesis, turn it on, flip
through a code book and enter your cheat codes,
then hit START and cheat to your heart’s content.

As it turns out, this thing is actually very useful.
What it really does is patch the game by intercepting
attempts to read cartridge ROM, changing them be-
fore they make it to the console for execution. The
codes are actually address/value pairs. For exam-
ple, if there’s a check in a game to jump to a “you’re
dead” subroutine when your health is at zero, you
could simply NOP out that Motorola 68k assembly
instruction. It will never take that jump, and your
character will never die.

Those of you who grow up with this thing might
remember that some games had a “master” code that
was required before any other codes. That code
was for defeating the ROM checksum check that the
game does to make sure it hasn’t been tampered
with. So once you entered the master code, you
could make all the changes you wanted.

Since the code format is documented,2 we can
easily make a Game Genie code that will change
the value at a certain address to whatever we spec-
ify. We can make minor changes to the game’s code
while it runs.

Due to the way the Motorola 68k works, we can
only change one 16-bit word at a time, never just a
single byte. No big deal, but keep it in mind because
it limits the changes that we can make.

Well, that’s nice in theory, but can it really work
with this game? First we fire up the game with the

Game Genie plugged in, but don’t enter any codes,
just to see if the cartridge works while it’s attached.

Yes, it does, so next we fire up the game, again
with the Game Genie plugged in, but this time we
enter a code that, say, locks up hard. Now, that’s
not the best test in the world, since the code could
be doing something we don’t understand, but if the
game suddenly won’t boot, we know at least we’ve
made an impact.

Now, according to online documentation, the for-
mat of a Genesis ROM begins with a 256-byte inter-
rupt vector table of the Motorola 68k,followed by a
256-byte area holding all sorts of information about
the ROM, such as the name of the game, the author,
the ROM checksum, etc. Then finally the game’s
machine code begins at address 0x0200.

If we make a couple of Game Genie codes that
place the Motorola 68k instruction “jmp 0x0200” at
0x200, the game will begin with an infinite loop. I
tried it, and that’s exactly what happened. We can
lock the game up, and that’s a pretty strong indica-
tion that this technique might work.

Getting back to our theory: if the game needs
to execute a special set of instructions to make the
32KB mirroring stop, we need to let it run and then
take back control and dump the ROM. How do we
know when and where to do that? We fire up a
disassembler and take a look.

1 0x0ec6 2079000015de movea . l 0x15de . l , a0
0 x0ecc 317 c0001000a move .w 0x1 , 0xa ( a0 )

3 0x0ed2 588 f addq . l 0x4 , a7
0x0ed4 600 c bra . b 0xee2

5 0x0ed6 2079000015de movea . l 0x15de . l , a0
0x0edc 317 c0001000a move .w 0x1 , 0xa ( a0 )

7 0x0ee2 0839000000 c0 bt s t . b 0x0 , 0xc00005 . l
0 x0eea 670 e beq . b 0 xe fa

9 0 x0eec 2079000015de movea . l 0x15de . l , a0
0 x0e f2 317 c0bb80004 move .w 0xbb8 , 0x4 ( a0 )

11 0 x0e f8 600 c bra . b 0 xf06
0 x0e fa 2079000015de movea . l 0x15de . l , a0

13 0 x0f00 317 c0e100004 move .w 0xe10 , 0x4 ( a0 )
0 x0f06 2079000015de movea . l 0x15de . l , a0

15 0 x0f0c 0 c680001000a cmpi .w 0x1 , 0xa ( a0 )
0 x0f12 6608 bne . b 0 x f1c

17 0 x0f14 4 e f90000e000 jmp 0xe000 . l

2unzip pocorgtfo15.pdf MakingGenesisGGcodes.txt AdvancedGenGGtips.txt
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It is at 0x000F14 that the code takes its first
jump outside of the first 32KB, to address 0x00E000.
So assuming this code executes properly, we know
that at the moment the game takes that jump, the
mirroring is no longer occurring. That’s the safest
moment to take control. We don’t yet have any idea
what happens once it jumps there, as this first 32KB
is all we have to study and work with.

So we can make 16-bit changes to the game’s
code as it runs via the Game Genie, and separately,
we can run code on the Genesis and access at least
part of the cartridge’s ROM via the Sega CD. What
we really need is a way to combine the two tech-
niques.

So then I had an idea: What if we booted the
Sega CD and wrote some 68k code to embed a ROM
dumper at the end of 68k RAM, then insert the
Game Genie and game while the system is on, then
hit the RESET button on the console, which just
resets the main 68k CPU, which means our ROM
dumper at the end of 68k RAM is still there It should
then go to boot the Game Genie this time instead
of the Sega CD, since there’s now a cartridge in the
slot, then enter Game Genie codes to make the game
jump straight into 68k RAM, then boot the game,
giving us control?

That’s quite a mouthful, so let’s go over it one
more time.

• We write some 68k shellcode to read the ROM
data and push it out the controller port back
to the PC.

• To run this code, we boot the Sega CD, which
receives and executes a payload from the PC.

• This payload copies our ROM dumping code
to the end of 68k RAM, which the 32KB dump
doesn’t seem to use.

• We insert our Game Genie and game into the
Genesis. This makes the system lock up, but
that’s not necessarily a bad thing, as we’re
about to reset anyway.

• We hit the RESET button on the console. The
Genesis starts to boot, detects the Game Ge-
nie and game cartridge so it boots from those
instead of the CD.

• We enter our Game Genie codes for the game
to jump into 68k RAM and hit START to start
the game, aaaand. . .

• Attempting this technique, the system locks
up just as we should be jumping into the pay-
load left in RAM. But why?

I went over this over and over and over in my
head, trying to figure out what’s wrong. Can you
see what’s wrong with this logic?

Yeah, so, I failed to take into account anything
the Game Genie might be doing to mess with our
embedded ROM dumping code in the 68K’s RAM.
When you disassemble the Game Genie’s ROM, you
find that one of the first things it does is wipe out
all of the 68K’s RAM.

1 0x0294 41 f 9 00 f f 0 000 l e a . l 0 x f f 0000 . l , a0
0x029a 323 c 7 f f f move .w 0 x7 f f f , d1

3 0x029e 7000 moveq 0x0 , d0
0x02a0 30 c0 move .w d0 , ( a0 )+

5 0x02a2 51 c 9 f f f c dbra d1 , 0x2a0

We can’t leave code in main CPU RAM across a
reboot because of the very same Game Genie that
lets us patch the ROM to jump into our shellcode.
So what do we do?

We know we can’t rely on our code still being
in 68k RAM by the time the game boots, but we
need something, anything to persist after we reset
the console. Well, what about Z80’s RAM?

Studying the Game Genie ROM reveals that
it puts a small Z80 sound program in Z80 RAM,
for playing the code entry sound effects, like when
you’re selecting or deleting a character. This pro-
gram is rather small, and the Game Genie doesn’t
wipe out all of Z80 RAM first. It just copies this
little program, leaving the rest alone.

So instead of putting our code at the end of
68K RAM, we can instead put it at the end of
Z80 RAM, along with a little Z80 code to copy it
back into 68k RAM. We can make a sequence of
Game Genie codes that patches Pier Solar’s Z80 pro-
gram to jump right to the end of Z80 RAM, where
our Z80 code will be waiting. We’ll then be free to
copy our 68k code back into 68k RAM, hopefully
before the Game Genie makes the 68k jump there.

10



With this new arrangement, we get control of
the 68K CPU after the game has booted! But the
extracted data is still mirrored, even though we are
executing the same way the real game runs.

Okay, so what are the differences between the
game’s code and our code?

We’re using a Game Genie, maybe the game de-
tects that? This is unlikely, as the game boots fine
with it attached. If it had a problem with the Game
Genie, you’d think it wouldn’t work at all.

Well, we’re running from RAM, and the game is
running from ROM. Perhaps the cartridge can dis-
tinguish between instruction fetches of code running
from ROM and the data fetches that occur when
code is running from RAM?

Our only ability to change the code in ROM
comes from the Game Genie, which is limited to
five codes. A dumper just needs to write bytes in
order to 0xA1000F, the Controller 2 UART Transmit
Buffer, but code to do that won’t fit in five codes.

Luckily there is a cheat device called the Pro Ac-
tion Replay 2 which supports 99 codes. These are
extremely rare and were never sold in the States, but
I was able to buy one through eBay. Unfortunately,
the game doesn’t boot with it at all, even with no
codes. It just sits at a black screen, even though the
Action Replay works fine with other cartridges.

So now what? Well, we think that the CPU must
be actively running from ROM, but except for mi-
nor patches with the Game Genie, we know our code
can only run from RAM. Is there any way we can
do both? Well, as it turns out, we already have the
answer.

We have two processors, and we were already us-
ing both of them! We can use the Game Genie to
make the 68k spin its wheels in an infinite loop in
ROM, just like the very first thing we tried with it,
while we use the other processor to dump it.

We were overthinking the first (and second) at-
tempts to get control away from the game, as there’s
no reason the 68K has to be the one doing the dump-
ing. In fact, having the Z80 do it might be the only
way to make this work.

So the Z80 dumper does its thing, dumping car-
tridge data through the Sega CD’s transfer cable
while the 68K stays locked in an infinite loop, still
fetching instructions from cartridge hardware! As
far as the cartridge is concerned, the game is run-
ning normally.

And YES, finally, it works! We study the first
4MB in IDA Pro to see how the bank switching
works. As luck would have it, Pier Solar’s bank
switching is almost exactly the same as Super Street
Fighter 2.

Armed with that knowledge, we can modify the
dumper to extract the remaining 4MB via bank
switching, which I dumped out in sixteen pieces
very slowly, through lots and lots and lots of trigger-
ing this crazy boot procedure. I mean, I can’t tell
you how excited I was that this crazy mess actually
worked. It was like four o’clock in the morning, and
I felt like I was on top of the world. That’s why I
do this stuff; really, that payoff is so worth it. It’s
just indescribable.
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Now that I had a complete dump, I looked for the
ROM checksum calculation code and implemented
it PC-side, and it actually matched the checksum
in the ROM header. Then I knew it was dumped
correctly.

Now starts the long process of studying the dis-
assembly to understand all the extra hardware. For
example, the save-state hardware is just a serial
EEPROM accessed by reads and writes to a cou-
ple of registers.

So now that we have all of it, what exactly can
we say was the protection? Well, I couldn’t tell you
how it works at a hardware level other than that it
appears to be an FPGA, but, disassembly reveals
these secrets from the software side.

The first 32KB is mirrored over and over until
specific accesses to 0x18010 occur. The mirroring
is automatically re-enabled by hardware if the sys-
tem isn’t executing from ROM for more than some
unknown amount of time.

The serial EEPROM, while it doesn’t require
a battery to hold its data, does prevent the game
from running in emulators that don’t explicitly sup-
port it. It also breaks compatibility with those flash
cartridges that people use for playing downloaded
ROMs on real consoles.

Once I got the ROM dumped, I couldn’t help
but try to get it working in some kind of emulator,
and at the time DGen was the easiest to understand
and modify, so I did the bare minimum to get that
working. It boots and works for the most part, but
it has a few graphical glitches here and there, prob-
ably related to VDP internals I don’t and will never
understand.3

Eventually somebody else came along and did it
better, with a port to MESS.

Don’t think anything is beyond your abilities:
use the skills you have, whatever they may be. Me,
I do TI graphing calculator programming and re-
verse engineering as a hobby. The two main proces-
sors those calculators use are the Motorola 68K and
Zilog Z80, so this project was tailor-made for me.
But as far as the hardware behind it, I had no clue;
I just had to make some guesses and hope for the
best.

“This isn’t the most efficient method” and “No-
body else would try this method.” are not reasons
to not work on something. If anything, they’re ac-
tually reasons to do it, because that means nobody
else bothered to try it, and you’re more likely to be
first. Crazy methods work, and I hope this little
endeavor has proven that.

3VDP is the display hardware in the Genesis.
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15:03 That car by the bear ain’t got no fire; or,
A Sermon on Alternators, Voltmeters, and Debugging

by Pastor Manul Laphroaig,
who is not certified by ASE.

Dear neighbors, I have a story to tell, and it’s not a
very flattering one.

A few years back, when I was having a bad day,
I bought a five hundred dollar Mercedes and took
to the open road. It had some issues, of course, so
a hundred miles down the road, I stopped in rural
Virginia and bought a new stereo. This was how I
learned that installing a stereo in a Walmart parking
lot looks a lot like stealing a stereo from a Walmart
parking lot.4

I also learned rather quickly that my four courses
of auto-shop in high school amounted to a lot of
book knowledge and not that much practical knowl-
edge. My buddies who bought old cars and fixed
them first-hand learned—and still know—a hell of
a lot more about their machines that I ever will
about mine. When squirrels chewed through the
wiring harness, when metal flakes made the wind-
shield wiper activate on its own, when the fuel line
was cut by rubbish in the street as I was tearing
down the Interstate at Autobahn speeds, I often
took the lazy way out and paid for a professional
to repair it.

But while it’s true that you learn more by build-
ing your own birdfeeder, that’s not the purpose
of this sermon. Today I’d like to tell you about
some alternator trouble. Somehow, someway, by
some mechanism unknown to gods and men, this
car seemed to be killing every perfectly good alter-
nator that was placed inside of it, and no mechanic
could figure out why.

It went like this: I’d be off having adventures,
then drop into town to pick up my wheels. Having
been away for so long, the battery would be dead.
“No big deal,” I’d say and jump-start the engine.
After the engine caught, I’d remove the cables, and
soon enough the battery would be dead again, the
engine with it. So I’d switch to driving my Ford5
and send my car to the shop.

4The fastest way to clear up such a misunderstanding, when confronted by a local, is to ask to borrow some tools.
5In auto-shop class we learned that FORD stands for “Found On Road Dead,” “Fix Or Repair Daily,” or “Job Security.”

Coach Crigger never mentioned what Mercedes stood for, but I expect it depends upon your credit, current lease terms, and
willingness to take a balloon payment!
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The mechanics at the shop would test the al-
ternator, and it’d look good. They’d test the bat-
tery, and it’d look good. Then they’d start the car,
and the alternator’s voltage would be low, so they’d
replace it out of caution. No one knew the root
cause, but the part’s under warranty, and the labor
is cheap, so who cares?

What actually happened is this: The alternator
doesn’t engage until the engine revs beyond natu-
ral idling or starting. The designers must have done
this to reduce the load on the starter motor, but it
has the annoying side effect of letting the battery
run to nothing after a jump start. The only indica-
tion to the driver is that the lights are a little dim
until the gas is first pressed.

I learned this by accident after installing a volt-
meter. Setting aside for the moment how absurd it
is that a car ships without one, let’s consider how
the mechanics were fooled. In software terms, we’d
say that they were confronted with a poorly repro-
ducible test case; they were bug-hunting from anec-
dotes, from hand-picked artisanal data. This always
ends in disaster, whether it’s a frustrated software
maintainer or a mechanic who becomes an unknow-
ing accomplice to four counts of warranty fraud.

So what mistakes did I make? First, I outsourced
my understanding to a shop rather than fixing my
own birdfeeder. The mechanic at the shop would
see my car once every six months, and he’d forget
the little things. He never noticed that the lights
were slightly dimmer before revving the engine, be-

cause he never started the car at night. To really
understand something, you ought to have a deep fa-
miliarity with it; a passing view is bound to give you
a quick little fix, or an exploit that doesn’t always
achieve continuation on its target.

Further, he never noticed that the battery only
died after a jumpstart, but never in normal use, be-
cause all of the cars that he sees have already ex-
hibited one problem or another and most of them
were daily drivers. Whenever you are hunting a
rare bug, consider the pre-existing conditions that
brought that crash to your attention.6

Getting back to the bastard who designed a car
with a single idiot light and no voltmeter, the sin-
gle handiest tool to avoid these unnecessary repairs
would have been to reproduce the problem when the
car wasn’t failing. Rather than spending months
between the car failing to start, a voltmeter would
have shown me that the voltage was low only before
the engine was first revved up! In the same way, we
should use every debugging tool at our disposal to
make a problem reproducible in the shortest time
possible, even if that visibility doesn’t end in the
problem that was first reported.

Paying attention to the voltage during a few
drives would have revealed the real problem, even
when the battery is sufficiently charged that the
engine doesn’t die. For this reason, we should be
looking for the root cause of EVERYTHING, never
settling for the visible effects.

We who play with computers have debugging
tools that the best mechanics can only dream of.
We have checkpoint-restart debuggers which can
take a snapshot just before a failure, then repeat-
edly execute a crash until the cause is known. We
have strace and dtrace and ftrace, we have dis-
assemblers and decompilers, we have tcpdump and
tcpreplay, we have more hooks than Muad’Dib’s
Fedaykin! We can deluge the machine with a thou-
sand core dumps, then merge them into a single test
case that reproduces a crash with crystal clarity; or,
if we prefer, a proof of concept that escapes from
the deepest sandbox to the outer limits!

Yet the humble alternator still has important
lessons to teach us.

6Some of you may recall the story of World War II statisticians who were called in to decide where to add armor based on
surveys of damage to returned Allied bombers. The right answer was to armor not where there were the most bullet holes, but
where there were none. Planes hit in those areas didn’t make it home to be surveyed.
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15:04 Text2COM
Silver Jubilee Edition, specially re-mastered for PoC‖GTFO

by Saumil Shah (@therealsaumil),
with special help from Mr. Udayan Shah

S T A R T :
   M O V      S I , F I L E     ;  S t a r t  o f  T e x t  F i l e
   P U S H     C S
   P O P      D S          ;  S e t  D a t a  S e g m e n t  =  C o d e  S e g m e n t

C L E A R :
   M O V      A H , 0 6       ;  S c r o l l  U p  W i n d o w
   X O R      A L , A L       ;  0  =  C l e a r  S c r e e n
   M O V      B H , 0 7       ;  W h i t e  o v e r  B l a c k
   X O R      C X , C X       ;  S t a r t  a t  0 , 0
   M O V      D H , 1 8       ;  r o w  2 2
   M O V      D L , 4 F       ;  c o l u m n  7 9
   I N T      1 0          ;  V i d e o  S e r v i c e s

   M O V      A H , 0 2       ;  S e t  C u r s o r  P o s i t i o n
   X O R      D X , D X       ;  0 , 0
   X O R      B H , B H       ;  P a g e  n u m b e r  0
   I N T      1 0          ;  V i d e o  S e r v i c e s

W R I T E C H A R :
   L O D S B               ;  A L  =  [ D S : S I ]
   M O V      D L , A L       ;  D L  =  c h a r a c t e r  t o  w r i t e
   N O T      A L          ;  1 ' s  C o m p l e m e n t
   X O R      A L , E 5       ;  E 5  =  1 ' s  C  ( E O F )
   J Z       E N D         ;  I f  E O F  c h a r a c t e r ,  j u m p  t o  E N D
   M O V      A H , 0 2       ;  W r i t e  C h a r a c t e r
   I N T      2 1          ;  D O S  S e r v i c e s

   M O V      A H , 0 3       ;  G e t  C u r s o r  P o s i t i o n
   X O R      B H , B H       ;  P a g e  0
   I N T      1 0          ;  V i d e o  S e r v i c e s .  D H , D L  =  R o w , C o l

   C M P      D H , 1 6       ;  I s  r o w  2 2 ?
   J L E      W R I T E C H A R   ;  J u m p  i f  <  2 2  t o  W R I T E C H A R

   M O V      A H , 0 9       ;  W r i t e  $ - T e r m i n a t e d  S t r i n g
   M O V      D X , P A G E R    ;  A d d r e s s  o f  P a g e r  S t r i n g
   I N T      2 1          ;  D O S  S e r v i c e s

   M O V      A H , 0 8       ;  R e a d  S i n g l e  C h a r a c t e r
   I N T      2 1          ;  D O S  S e r v i c e s
   J M P      C L E A R       ;  J u m p  t o  C L E A R

E N D :
   I N T      2 0

P A G E R :
   D B       ' [ T e x t 2 C O M  b y  S a u m i l  S h a h  ( c ) 1 9 9 2 ]  '
   D B       ' P r e s s  A n y  K e y . . .  $ '

F I L E :
   ;  T e x t  c o n t e n t  g o e s  h e r e .

Text2COM generates self-
displaying README.COM files
by prefixing a short sequence
of DOS Assembly instruc-
tions before a text file. The
resultant file is an MS-DOS
.COM program which can be
executed directly from the
command prompt.

The Text2COM code dis-
plays the contents of the ap-
pended file page by page.

Text2COM’s executable code
is created by MS-DOS’s
DEBUG program.

Then take any text file and concatenate it with README.BIN and store the resultant file as README.COM:

C:\>copy README.BIN+TEXT2COM.TXT README.COM

You now have a self-displaying README.COM file!
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15:05 RISC-V Shellcode
by Don A. Bailey

RISC-V is a new and exciting open source archi-
tecture developed by the RISC-V Foundation. The
Foundation has released the Instruction Set Archi-
tecture open to the public, and a Privilege Architec-
ture Model that defines how general purpose operat-
ing systems can be implemented. Even more excit-
ing than a modern open source processing architec-
ture is the fact that implementations of the RISC-V
are available that are fully open source, such as the
Berkeley Rocket Chip7 and the PULPino.8

To facilitate silicon development, a new lan-
guage developed at Berkeley, Chisel,9 was devel-
oped. Chisel is an open-source hardware language
built from Scala, and synthesizes Verilog. This al-
lows fast, efficient, effective development of hard-
ware solutions in far less time. Much of the Rocket
Chip implementation was written in Chisel.

Furthermore, and perhaps most exciting of all,
the RISC-V architecture is 128-bit processor ready.
Its ISA already defines methodologies for imple-
menting a 128-bit core. While there are some
aspects of the design that still require definition,
enough of the 128-bit architecture has been specified
that Fabrice Bellard has successfully implemented
a demo emulator.10 The code he has written as a
demo of the emulator is, perhaps, the first 128-bit
code ever executed.

Binary Exploitation

To compromise a RISC-V application or kernel
in the traditional memory corruption manner, one
must understand both the ISA and the calling con-
vention for the architecture. In RISC-V, the term
XLEN is used to denote the native integer size of
the base architecture, e.g. XLEN=32 in RV32G.
Each register in the processor is of XLEN length,
meaning that when a register is defined in the spec-
ification, its format will persist throughout any def-
inition of the RISC-V architecture, except for the
length, which will always equate to the native inte-
ger length.

General Registers

In general, RISC-V has 32 general (or x) registers:
x0 through x31.11 These registers are all of length
XLEN, where bit zero is the least-significant-bit and
the most-significant-bit is XLEN-1. These registers
have no specific meaning without the definition of
the Application Binary Interface (ABI).

The ABI defines the following naming conven-
tions to contextualize the general registers, shown
in Figure 2.12

7git clone https://github.com/freechipsproject/rocket-chip
8http://www.pulp-platform.org/
9https://chisel.eecs.berkeley.edu/

10https://bellard.org/riscvemu/
11RISC-V ISA Specification v2.1, Page 10, Figure 2.1.
12RISC-V ISA Specification v2.1, Page 109, Table 20.2
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Register ABI Name Description Saver
x0 zero Hard-wired to zero –
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer –
x4 tp Thread pointer –
x5-7 t0-2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 a0-1 Function arguments/return values Caller
x12-17 a2-7 Function arguments Caller
x18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

Figure 2. Naming conventions for general registers according to the current ABI.

Floating-Point Registers

RISC-V also has 32 floating point registers fp0
through fp31, shown in Figure 3. The bit size of
these registers is not XLEN, but FLEN. FLEN refers
to the native floating point size, which is defined
by which floating point extensions are supported by
the implementation. If the ‘F’ extension is sup-
ported, only 32-bit floating point is implemented,
making FLEN=32.13 If the ‘D’ extension is sup-
ported, 64-bit floating point numbers are supported,
making FLEN=64.14 If the ‘Q’ extension is sup-
ported, quad-word floating point numbers are sup-
ported, and FLEN extends to 128.15

Calling Convention

Like any Instruction Set Architecture (ISA), RISC-
V has a standard calling convention. But, because
of the RISC-V’s definition across multiple architec-
tural subclasses, there are actually three standard-
ized calling conventions: RVG, Soft Floating Point,
and RV32E.

Naming Conventions RISC-V’s architecture is
somewhat reminiscent of the Plan 9 architecture
naming style, where each architecture is assigned a
specific alphanumeric A through Z or 0 through 9.
RISC-V supports 24 architectural extensions, one
for each letter of the English alphabet. The two ex-

ceptions are G and X. The G extension is actually a
mnemonic that represents the RISC-V architecture
extension set IMAFD, where I represents the base in-
teger instruction set, M represents multiply/divide, A
represents atomic instructions, F represents single-
precision floating point, and D represents double-
precision floating point. Thus, when one refers to
RVG, they are indicating the RISC-V (RV) set of
architecture extensions G, actually referring to the
combination IMAFD.16

This colloquialism also implies that there is no
specific architectural bit-space being singled out: all
three of the 32-bit, 64-bit, and 128-bit architectures
are being referenced. This is common in description
of the architectural standard, software relevant to all
architectures (a kernel port), or discussion about the
ISA. It is more common, in development, to see the
architecture described with the bit-space included
in the name, e.g. RV32G, RV64G, or RV128G.

It is also worth noting here that it is defined in
the specification and core register set that an im-
plementation of RISC-V can support all three bit-
spaces in a single processor, and that the state of the
processor can be switched at run-time by setting the
appropriate bit in the Machine ISA Register misa.17

Thus, in this context, the RVG calling conven-
tion denotes the model for linking one function to
another function in any of the three RISC-V bit-
spaces.

13RISC-V ISA Specification v2.1, Section 7.1, Page 39
14RISC-V ISA Specification v2.1, Section 8.1
15RISC-V ISA Specification v2.1, Chapter 12, Paragraph 1
16RISC-V Privileged Architecture Manual v1.9.1, Section 3.1.1, Page 18
17Ibid.
18RISC-V ISA Specification v2.1, Page 6, Paragraph 1
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Register ABI Name Description Saver
f0-7 ft0-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f10-11 fa0-1 FP arguments/return values Caller
f12-17 fa2-7 FP arguments Caller
f18-27 fs2-11 FP saved registers Callee
f28-31 ft8-11 FP temporaries Caller

Figure 3. Floating point register naming convention according to the current ABI.

RVG RISC-V is little-endian by definition and big
or bi-endian systems are considered non-standard.18
Thus, it should be presumed that all RISC-V im-
plementations are little-endian unless specifically
stated otherwise.

To call any given function there are two instruc-
tions: Jump and Link and Jump and Link Register.
These instructions take a target address and branch
to it unconditionally, saving the return address in a
specific register. To call a function whose address is
within 1MB of the caller’s address, the jal instruc-
tion can be used:

1 20400060: 661000 e f j a l 20400 ec0 <printk>

To call a function whose address is either gen-
erated dynamically, or is outside of the 1MB target
range, the jalr instruction must be used:

1 204001 ac : 0087 a783 lw a5 , 8 ( a5 )
204001b0 : 000780 e7 j a l r a5

In both of the above examples, bits 7 through
11 of the encoded opcode equate to 0b00001. These
bits indicate the destination register where the re-
turn address is stored. In this case, 1 is equivalent
to register x1, also known as the return address reg-
ister: ra. In this fashion, the callee can simply per-
form their specific functionality and return by using
the contents of the register ra.

Returning from a function is even simpler. In
the RISC-V ABI, we learned earlier that the return
address is presumed to be stored in ra, or, general
register x1. To return control to the address stored
in ra, we simply use the Jump and Link Register
instruction, with one slight caveat. When returning
from a function, the return address can be discarded.
So, the encoded destination register for jalr is x0.
We learned earlier that x0 is hardwired to the value
zero. This means that despite the return address

being written to x0, the register will always read
as the value zero, effectively discarding the return
address.
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Thus, a return instruction is colloquially:

204002 a8 : 00008067 r e t

Which actually equates to the instruction:

1 204002 a8 : 00008067 j a l r ra , ze ro

Local stack space can be allocated in a simi-
lar fashion to any modern processing environment.
RISC-V’s stack grows downward from higher ad-
dresses, as is common convention. Thus, to allocate
space for automatics, a function simply decrements
the stack pointer by whatever stack size is required.

1 20402188 <arch_main>:
20402188: fe010113 addi sp , sp ,−32

3 2040218 c : 80000537 l u i a0 , 0 x80000
20402190: 80000637 l u i a2 , 0 x80000

5 20402194: 00112 e23 sw ra , 2 8 ( sp )

7 20402220: 01 c12083 lw ra , 2 8 ( sp )
20402224: 02010113 addi sp , sp ,32

9 20402228: 00008067 r e t

In the above example, a standard addi instruc-
tion (highlighted in red) is used to both create and
destroy a stack frame of 32 bytes. Four of these bytes
are used to store the value of ra. This implies that
this function, arch_main, will make calls to other
functions and will require the use of ra. The lines
highlighted in green depict the saving and retrieval
of the return address value.

This fairly standard calling convention implies
that binary exploitation can be achieved, but has
several caveats. Like most architectures, the return
address can be overwritten in stack memory, mean-
ing that standard stack buffer overflows can result
in the control of execution. However, the return ad-
dress is only stored in the stack for functions that
make calls to other functions.

Leaf functions, functions that make no calls to
other functions, do not store their return address on
the stack. These functions, similar to other RISC
architectures, must be attacked by

• Overwriting the previous function’s stack
frame or stored return address

• Overwriting the return address value in regis-
ter ra

• Manipulating application flow by attacking a
function-specific feature such as a function
pointer

Soft-Float Calling Convention With regard to
the threat of exploitation, the RISC-V soft-float call-
ing convention has little effect on an attacker strat-
egy. The jal/jalr and stack conventions from RVG
persist. The only difference is that the floating point
arguments are passed in argument registers accord-
ing to their size. But, this typically has little ef-
fect on general exploitation theory and will only be
abused in the event that there is an application-
specific issue.

It is notable, however, that implementations
with hard-float extensions may be vulnerable to
memory corruption attacks. While hard-float im-
plementations use the same RVG calling conventions
as defined above, they use floating point registers
that are used to save and restore state within the
floating point ecosystem. This may provide an at-
tacker an opportunity to affect an application in an
unexpected manner if they are able to manipulate
saved registers (either in the register file or on the
stack).

While this is application specific and does not
apply to general exploitation theory, it is interesting
in that the RISC-V ABI does implement saved and
temporary registers specifically for floating point
functionality.

RV32E Calling Convention It’s important to
note the RV32E calling convention, which is slightly
different from RVG. The E extension in RISC-V de-
notes changes in the architecture that are benefi-
cial for 32-bit Embedded systems. One could liken
this model to ARM’s Cortex-M as a variant of the
Cortex-A/R, except that RVG and RV32E are more
tightly bound.

RV32E only uses 16 general registers rather than
32, and never has a hard-floating point extension.
As a result, exploit developers can expect the call
and local stack to vary. This is because, with the
reduced number of general registers, there are less
argument registers, save registers, and temporaries.

• 6 argument registers, x10 to x15.

• 2 save registers, x8 and x9.

• 3 temporary registers, x5 to x7.
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As is described earlier in this document, the gen-
eral RVG model is

• 8 argument registers.

• 12 save registers.

• 7 temporary registers.

Functions defined with numbers of arguments ex-
ceeding the argument register count will pass excess
arguments via the stack. In RV32E this will ob-
viously occur two arguments sooner, requiring an
adjustment to stack or frame corruption attacks.
Save and temporary registers saved to stack frames
may also require adjustments. This is especially true
when targeting kernels.

The ‘C’ Extension Effect

The RISC-V C (compression) extension can be con-
sidered similar to the Thumb variant of the ARM
ISA. Compression reduces instructions from 32 to 16
bits in size. For exploits where shellcode is used, or
Return Oriented Programming (ROP) is required,
the availability (or lack) of C will have a significant
effect on the effects of an implant.

An interesting side effect of the C extension is
that not all instructions are compressed. In fact, in
the Harvest OS kernel (a Lab Mouse Security pro-
prietary operating system), the compression exten-
sion currently only results in approximately 60% of
instructions compressed to 16 bits.

Because the processor must evaluate the type of
an instruction at every fetch (compressed or not)
when compression is available, there is a CISC-like
effect for exploitation. Valid compressed instruc-
tions may be encoded in the lower 16 bits of an ex-
isting 32-bit instruction. This means that someone,
for example, implementing a ROP attack against a
target may be able to find useful 16 bit opcodes em-
bedded in intentional 32-bit opcodes. This is similar
to a paper I wrote in 2002 that demonstrated that
ROP on CISC architectures (then called return-to-
text) could abuse long multi-byte opcodes to target
useful bytes that represented beneficial opcodes not
intended to be used by the compiler.19

1 20400032 <lock_unlock >:
20400032: 0 a05202f amoswap .w. r l zero , zero , ( a0 )

3 20400036: 4505 l i a0 , 1
20400038: 8082

Since the C extension is not a part of the
RVG IMAFD extension set, it is currently unknown
whether C will become a commonly implemented ex-
tension. Until RISC-V is more predominant and a
key player arises in chip manufacturing, exploit de-
velopers should either target their payloads for spe-
cific machines, or should focus on the uncompressed
instruction set.

Observations

Exploitation really isn’t so different from other
RISC targets, such as ARM. Just like ARM, the
compression extension isn’t necessary for ROP, but
it can be handy for unintentionally encoded gadgets.
While mitigations like -fstack-protection[-all]
are supported, they require __stack_chk_{guard-
,fail}, which might be lacking on your target plat-
form. For Linux targets, be sure to enable PIE,
now, relro for ASLR and GOT hardening.

Building Shellcode

Building shellcode for any given architecture gener-
ally only requires understanding how to satisfy the
following abstractions:

• Allocating memory.

• Locating static data.

• Calling routines.

• Returning from routines.

Allocating Memory

Allocating memory in RISC-V environments is sim-
ilar to almost any other processing environment for
conventional operating systems. Since there is a
stack pointer register (sp/x2), the programmer can
simply take a chance and allocate memory via the
stack. This presumes that there is enough avail-
able memory in the system, and that a fault won’t
occur. If the exploitation target is a userland appli-
cation in a typical operating system, this is always a
reasonable gamble as even if allocating stack would
fault, the underlying OS will generally allocate an-
other page for the userland application. So, since
the stack grows down, the programmer only needs
to decrement the sp (round up to a multiple of 4
bytes) to create more space using system stack.

19Sendmail Prescan Exploitation and CISCO Encodings (127 Research & Development, 2002)
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Some environments may allocate thread-specific
storage, accessible through a structure stored in the
thread pointer (tp/x4). In this case, simply deref-
erence the structure pointed to by x4, and find the
pointer that references thread-local storage (TLS).
It’s best to store the pointer to TLS in a temporary
register (or even sp), to make it easier to abuse.

As with most programming environments, dy-
namic memory is typically also available, but must
be acquired through normal calling conventions.
The underlying mechanism is usually malloc, mmap,
or an analog of these functions.

Locating Static Data

Data stored within shellcode must be referenced as
an offset to the shellcode payload. This is another
normal shellcode construct. Again, RISC-V is simi-
lar to any other processing environment in this con-
text. The easiest way to identify the address of
data in a payload is to find the address in mem-
ory of the payload, or to write assembly code that
references data at position independent offsets. The
latter is my preferred method of writing shellcode,
as it makes the most engineering sense. But, if
you prefer to build address offsets within executable
images, the usual shellcode self-calling convention
works fine:
0000000000000000 <l o l >:

2 0 : 0100006 f j 10 <bounce>
0000000000000004 <lo l 2 >:

4 4 : 00000513 l i a0 , 0
8 : 0000 a583 lw a1 , 0 ( ra )

6 c : 00000073 e c a l l
0000000000000010 <bounce>:

8 10 : f f 5 f f 0 e f j a l ra , 4 <lo l 2 >
0000000000000014 <data >:

10 14 : 0304 addi s1 , sp ,384
16 : 0102 s l l i sp , sp , 0 x0

As you can see in the above code example, the
first instruction performs a jump to the last instruc-
tion prior to static data. The last instruction is a
jump-and-link instruction, which places the return
address in ra. The return address, being the next
instruction after jump-and-link, is the exact address
in memory of the static data. This means that we
can now reference chunks of that data as an offset
of the ra register, as seen in the load-word instruc-
tion above at address 0x08, which loads the value
0x01020304 into register a1.

It’s notable, at this point, to make a comment
about shellcode development in general. Artists gen-

erally write raw assembly code to build payloads, be-
cause it’s more elegant and it results in a much more
efficient application. This is my personal preference,
because it’s a demonstration of one’s connection to
the code, itself. However, it’s largely unnecessary.
In modern environments, many targets are 64-bit
and contain enough RAM to inject large payloads
containing encrypted blobs. As a result, one can
even write position independent code (PIC) appli-
cations in C (and even C++, if one dares). The
resultant binary image can be injected as its own
complete payload, and it runs perfectly well.

But, for constrained targets with little usable
scratch memory, primary loaders, or adversaries
with an artistic temperament, assembly will always
be the favorite tool of trade.

Calling Routines

Earlier in this document, I described the general
RISC-V calling convention. Arguments are placed
in the aN registers, with the first argument at a0, sec-
ond at a1, and so-forth. Branching to another rou-
tine can be done with the jump-and-link (jal) in-
struction, or with the jump-and-link register (jalr)
instruction. The latter instruction has the absolute
address of the target routine stored in the regis-
ter encoded into the instruction, which is a normal
RISC convention. This will be the case for any ap-
plication routine called by your shellcode.

The Linux syscall convention, in the context of
RISC-V, is likely similar to other general purpose
operating systems running on RISC-V processors.
The Linux model deviates from the generic calling
convention by using the ecall instruction. This in-
struction, when executed from userland, initiates a
trap into a higher level of privilege. This trap is
processed as, of course, a system call, which allows
the kernel running at the higher layer of privilege to
process the request appropriately.

System call numbers are encoded into register
a7. Other arguments are encoded in the standard
fashion, in registers a0 through a6. System calls
exceeding seven arguments are stored on the stack
prior to the call. This convention is also true of
general routine calls whose argument totals exceed
available argument registers.
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Returning from Routines

Passing arguments back from a routine is simple,
and is, again, similar to any other conventional pro-
cessing environment. Arguments are passed back in
the argument register a0. Or, in the argument pair
a0 and a1, depending on the context.

This is also true of system calls triggered by the
ecall instruction. Values passed back from a higher
layer of privilege will be encoded into the a0 regis-
ter (or a0 and a1). The caller should retrieve values
from this register (or pair) and treat the value prop-
erly, depending on the routine’s context.

One notable feature of RISC-V is its compare-
and-branch methodology. Branching can be accom-
plished by encoding a comparison of registers, like
other RISC architectures. However, in RISC-V,
two specific registers can be compared along with
a target in the event that the comparison is equiva-
lent. This allows very streamlined evaluation of val-
ues. For example, when the standard system call
mmap returns a value to its caller, the caller can
check for mmap failure by comparing a0 to the zero
register and using the branch-less-than instruction.
Thus, the programmer doesn’t actually need multi-
ple instructions to effect the correct comparison and
branch code block; a single instruction is all that is
required.

Putting it Together

The following example performs all actions de-
scribed in previous sections. It allocates 80 bytes
of memory on the stack, room for ten 64-bit words.
It then uses the aforementioned bounce method to
acquire the address of the static data stored in the
payload. The system call for socket is then called
by loading the arguments appropriately.

After the system call is issued, the return value
is evaluated. If the socket call failed, and a negative
value was returned, the _open_a_socket function is
looped over.

If the socket call does succeed, which it likely
will, the application will crash itself by calling a
(presumably) non-existent function at virtual ad-
dress 0x00000000.

As an example, the byte stored in static memory
is loaded as part of the system call, only to demon-
strate the ability to load code at specific offsets.

1 0000000000000000 <l o l >:
0 : fb010113 addi sp , sp ,−80

3 4 : 00113023 sd ra , 0 ( sp )
8 : 00813423 sd s0 , 8 ( sp )

5 c : 0200006 f j 2c <bounce>
0000000000000010 <_open_a_socket>:

7 10 : 00200513 l i a0 , 2
14 : 00100593 l i a1 , 1

9 18 : 00600613 l i a2 , 6
1c : 00008883 lb a7 , 0 ( ra )

11 20 : 00000073 e c a l l
0000000000000024 <_crash_or_loop>:

13 24 : f e0546e3 b l t z a0 ,10 <_open_a_socket>
0000000000000028 <_crash>:

15 28 : 00000067 j r ze ro
000000000000002 c <bounce>:

17 2c : f e 5 f f 0 e f j a l ra , 10 <_open_a_socket>
0000000000000030 <data >:

19 30 : 00 c6 s l l i ra , ra , 0 x11

– — — – — — — — – — –
Big shout out to #plan9 for still existing after 17

years, TheNewSh for always rocking the mic, Travis
Goodspeed for leading the modern zine revolution,
RMinnich for being an excellent resource over the
past decade, RPike for being an excellent role model,
and my baby Pierce, for being my inspiration.

Source code and shellcode for this article
are available attached to this PDF and through
Github.20

20git clone https://github.com/donbmouse/riscv-security || unzip pocorgtfo15.pdf riscv-security.zip
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Dearest neighbors,

I
n 19th century America, there were these
books made just for the frontiersman who
couldn’t carry a library. The idea was that
if you were setting out to homestead in the

wild blue yonder, one properly assembled book could
teach you everything you needed to know that wasn’t
told in the family bible. How to make ink from the
green husks around walnuts, how to grow food from
wild seeds, and how to build a shelter from scruffy little
trees when there’s not yet time to fell hardwood. You
might even learn to make medicines, though I’d cau-
tion against any recipes involving nightshade or mer-
cury.
Now that the 21st century and its newfangled ways

are upon, the fine folks at No Starch Press have seen
fit to print the collected works of PoC‖GTFO, our
first nine releases in one classy tome, bound in the
finest faux leather on nearly eight hundred pages of
thin paper with a ribbon to keep your place while
studying. You will see practical examples of how to
write exploits for ancient and modern architectures,
how to patch emulators to prototype hardware back-
doors that would be beyond a hobbyist’s budget, and
how to break bad cryptography. You will learn more
about file formats than you every believed possible,
and a little about how to photograph microchips and
circuit boards for reverse engineering.
This fine collection was carefully indexed and cross-

referenced, with twenty-four full color pages of Ange
Albertini’s file format illustrations to help understand
our polyglots. It’s available for just $30 plus shipping,
with the option of a free pickup at Defcon.

Pastor Manul Laphroaig

Your neighbor,

PoC||GTFO

https://nostarch.com/gtfo



15:06 Gumball
by 4am and Peter Ferrie (qkumba, san inc)

Name Gumball
Genre arcade
Year 1983
Credits by Robert Cook, concept by Doug Carl-

ston
Publisher Broderbund Software
Platform Apple ][+ or later (48K)
Media single-sided 5.25-inch floppy
OS custom
Other versions

• Mr. Krac-Man & The Disk Jockey
• several uncredited cracks

In Which Various Automated Tools
Fail In Interesting Ways
COPYA immediate disk read error
Locksmith Fast Disk Backup unable to read

any track
EDD 4 bit copy (no sync, no count) Disk

seeks off track 0, then hangs with the drive
motor on

Copy II+ nibble editor
• T00 has a modified address prologue (D5

AA B5) and modified epilogues
• T01+ appears to be 4-4 encoded data

(2 nibbles on disk = 1 byte in memory)
with a custom prologue/ delimiter. In
any case, it’s neither 13 nor 16 sectors.

Disk Fixer not much help
Why didn’t COPYA work? not a 16-sector disk
Why didn’t Locksmith FDB work? ditto
Why didn’t my EDD copy work? I don’t know.

Early Broderbund games loved using half
tracks and quarter tracks, not to mention
the runtime protection checks, so it could be
literally anything. Or, more likely, any com-
bination of things.

This is decidedly not a single-load game. There
is a classic crack that is a single binary, but it cuts
out a lot of the introduction and some cut scenes
later. All other cracks are whole-disk, multi-loaders.

Combined with the early indications of a custom
bootloader and 4-4 encoded sectors, this is not go-
ing to be a straightforward crack by any definition
of “straight” or “forward.”

Let’s start at the beginning.

In Which We Brag About Our Humble
Beginnings

I have two floppy drives, one in slot 6 and the other
in slot 5. My “work disk” (in slot 5) runs Diversi-
DOS 64K, which is compatible with Apple DOS 3.3
but relocates most of DOS to the language card on
boot. This frees up most of main memory (only us-
ing a single page at $BF00..$BFFF), which is useful
for loading large files or examining code that lives
in areas typically reserved for DOS.

[S6,D1=original disk]
[S5,D1=my work disk]

The floppy drive firmware code at $C600 is re-
sponsible for aligning the drive head and reading
sector 0 of track 0 into main memory at $0800. Be-
cause the drive can be connected to any slot, the
firmware code can’t assume it’s loaded at $C600. If
the floppy drive card were removed from slot 6 and
reinstalled in slot 5, the firmware code would load
at $C500 instead.

To accommodate this, the firmware does some
fancy stack manipulation to detect where it is in
memory (which is a neat trick, since the 6502 pro-
gram counter is not generally accessible). However,
due to space constraints, the detection code only
cares about the lower 4 bits of the high byte of its
own address.

Stay with me, this is all about to come together
and go boom.

$C600 (or $C500, or anywhere in $Cx00) is read-
only memory. I can’t change it, which means I
can’t stop it from transferring control to the boot
sector of the disk once it’s in memory. BUT! The
disk firmware code works unmodified at any address.
Any address that ends with $x600 will boot slot 6,
including $B600, $A600, $9600, &c.
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*9600<C600.C6FFM copy drive firmware to $9600

*9600G and execute it

. . .reboots slot 6, loads game. . .
Now then:

]PR#5 . . .
]CALL -151
*9600<C600.C6FFM
*96F8L
96F8 4C 01 08 JMP $0801

That’s where the disk controller ROM code ends
and the on-disk code begins. But $9600 is part of
read/write memory. I can change it at will. So I can
interrupt the boot process after the drive firmware
loads the boot sector from the disk but before it
transfers control to the disk’s bootloader.

96F8 A0 00 LDY #$00
96FA B9 00 08 LDA $0800,Y
96FD 99 00 28 STA $2800,Y
9700 C8 INY
9701 D0 F7 BNE $96FA

instead of jumping to on-disk
code, copy boot sector to
higher memory so it survives
a reboot

9703 AD E8 C0 LDA $C0E8 turn off slot 6 drive motor

9706 4C 00 C5 JMP $C500
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT0,A$2800,L$100

reboot to my work disk in slot
5

Now we get to21 trace the boot process one sec-
tor, one page, one instruction at a time.

In Which We Get To Dip Our Toes
Into An Ocean Of Raw Sewage

]CALL -151

*800<2800.28FFM
801L

copy code back to $0800
where it was originally loaded,
to make it easier to follow

0801 A2 00 LDX #$00
0803 BD 00 08 LDA $0800,X
0806 9D 00 02 STA $0200,X
0809 E8 INX
080A D0 F7 BNE $0803
080C 4C 0F 02 JMP $020F

immediately move this code
to the input buffer at $0200

OK, I can do that too. Well, mostly. The page at
$0200 is the text input buffer, used by both Apple-
soft BASIC and the built-in monitor (which I’m in
right now). But I can copy enough of it to examine
this code in situ.

*20F<80F.8FFM
*20FL

020F A0 AB LDY #$AB
0211 98 TYA
0212 85 3C STA $3C
0214 4A LSR
0215 05 3C ORA $3C
0217 C9 FF CMP #$FF
0219 D0 09 BNE $0224
021B C0 D5 CPY #$D5
021D F0 05 BEQ $0224
021F 8A TXA
0220 99 00 08 STA $0800,Y
0223 E8 INX
0224 C8 INY
0225 D0 EA BNE $0211
0227 84 3D STY $3D

set up a nibble translation
table at $0800

0229 84 26 STY $26
022B A9 03 LDA #$03
022D 85 27 STA $27

#$00 into zero page $26 and
#$03 into $27 means we’re
probably going to be loading
data into $0300..$03FF later,
because ($26) points to $0300.

022F A6 2B LDX $2B
0231 20 5D 02 JSR $025D

*25DL

zero page $2B holds the boot
slot x16

025D 18 CLC
025E 08 PHP
025F BD 8C C0 LDA $C08C,X
0262 10 FB BPL $025F
0264 49 D5 EOR #$D5
0266 D0 F7 BNE $025F
0268 BD 8C C0 LDA $C08C,X
026B 10 FB BPL $0268
026D C9 AA CMP #$AA
026F D0 F3 BNE $0264
0271 EA NOP
0272 BD 8C C0 LDA $C08C,X
0275 10 FB BPL $0272

read a sector from track $00
(this is actually derived from
the code in the disk controller
ROM routine at $C65C, but
looking for an address
prologue of “D5 AA B5” instead
of “D5 AA 96”) and using the
nibble translation table we set
up earlier at $0800

0277 C9 B5 CMP #$B5
0279 F0 09 BEQ $0284
027B 28 PLP
027C 90 DF BCC $025D
027E 49 AD EOR #$AD
0280 F0 1F BEQ $02A1
0282 D0 D9 BNE $025D
0284 A0 03 LDY #$03
0286 84 2A STY $2A
0288 BD 8C C0 LDA $C08C,X
028B 10 FB BPL $0288
028D 2A ROL
028E 85 3C STA $3C
0290 BD 8C C0 LDA $C08C,X
0293 10 FB BPL $0290
0295 25 3C AND $3C
0297 88 DEY
0298 D0 EE BNE $0288
029A 28 PLP
029B C5 3D CMP $3D
029D D0 BE BNE $025D
029F B0 BD BCS $025E
02A1 A0 9A LDY #$9A
02A3 84 3C STY $3C
02A5 BC 8C C0 LDY $C08C,X
02A8 10 FB BPL $02A5

#$B5 for third prologue
nibble

21If you replace the words “need to” with the words “get to,” life becomes amazing.
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02AA 59 00 08 EOR $0800,Y
02AD A4 3C LDY $3C
02AF 88 DEY
02B0 99 00 08 STA $0800,Y
02B3 D0 EE BNE $02A3
02B5 84 3C STY $3C
02B7 BC 8C C0 LDY $C08C,X
02BA 10 FB BPL $02B7
02BC 59 00 08 EOR $0800,Y
02BF A4 3C LDY $3C

use the nibble translation
table we set up earlier to
convert nibbles on disk into
bytes in memory

02C1 91 26 STA ($26),Y
02C3 C8 INY
02C4 D0 EF BNE $02B5

store the converted bytes at
$0300

02C6 BC 8C C0 LDY $C08C,X
02C9 10 FB BPL $02C6
02CB 59 00 08 EOR $0800,Y
02CE D0 8D BNE $025D
02D0 60 RTS

verify the data with a
one-nibble checksum

Continuing from $0234. . .
*234L
0234 20 D1 02 JSR $02D1
*2D1L

02D1 A8 TAY
02D2 A2 00 LDX #$00
02D4 B9 00 08 LDA $0800,Y
02D7 4A LSR
02D8 3E CC 03 ROL $03CC,X
02DB 4A LSR
02DC 3E 99 03 ROL $0399,X
02DF 85 3C STA $3C
02E1 B1 26 LDA ($26),Y
02E3 0A ASL
02E4 0A ASL
02E5 0A ASL
02E6 05 3C ORA $3C
02E8 91 26 STA ($26),Y
02EA C8 INY
02EB E8 INX
02EC E0 33 CPX #$33
02EE D0 E4 BNE $02D4
02F0 C6 2A DEC $2A
02F2 D0 DE BNE $02D2

finish decoding nibbles

02F4 CC 00 03 CPY $0300
02F7 D0 03 BNE $02FC

verify final checksum

02F9 60 RTS checksum passed, return to
caller and continue with the
boot process

02FC 4C 2D FF JMP $FF2D checksum failed, print “ERR”
and exit

Continuing from $0237. . .

0237 4C 01 03 JMP $0301 jump into the code we just
read

This is where I get to interrupt the boot, before
it jumps to $0301.

In Which We Do A Bellyflop Into A
Decrypted Stack And Discover That I
Am Very Bad At Metaphors

*9600<C600.C6FFM

96F8 A9 05 LDA #$05
96FA 8D 38 08 STA $0838
96FD A9 97 LDA #$97
96FF 8D 39 08 STA $0839

patch boot0 so it calls my
routine instead of jumping to
$0301

9702 4C 01 08 JMP $0801 start the boot

9705 A0 00 LDY #$00
9707 B9 00 03 LDA $0300,Y
970A 99 00 23 STA $2300,Y
970D C8 INY
970E D0 F7 BNE $9707

(callback is here) copy the
code at $0300 to higher
memory so it survives a
reboot

9710 AD E8 C0 LDA $C0E8
9713 4C 00 C5 JMP $C500
*BSAVE TRACE,A$9600,L$116
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0300-03FF,A$2300,L$100
]CALL -151
*2301L
2301 84 48 STY $48

turn off slot 6 drive motor
and reboot to my work disk
in slot 5
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2303 A0 00 LDY #$00
2305 98 TYA
2306 A2 20 LDX #$20
2308 99 00 40 STA $4000,Y
230B C8 INY
230C D0 FA BNE $2308
230E EE 0A 03 INC $030A
2311 CA DEX
2312 D0 F4 BNE $2308

clear hi-res graphics screen 2

2314 AD 57 C0 LDA $C057
2317 AD 52 C0 LDA $C052
231A AD 55 C0 LDA $C055
231D AD 50 C0 LDA $C050

and show it (appears blank)

2320 B9 00 03 LDA $0300,Y
2323 45 48 EOR $48
2325 99 00 01 STA $0100,Y
2328 C8 INY
2329 D0 F5 BNE $2320

decrypt the rest of this page
to the stack page at $0100

232B A2 CF LDX #$CF
232D 9A TXS

set the stack pointer

232E 60 RTS and exit via RTS

*9600<C600.C6FFM

96F8 A9 05 LDA #$05
96FA 8D 38 08 STA $0838
96FD A9 97 LDA #$97
96FF 8D 39 08 STA $0839

patch boot0 so it calls my
routine instead of jumping to
$0301

9702 4C 01 08 JMP $0801 start the boot

9705 A0 00 LDY #$00
9707 B9 00 03 LDA $0300,Y
970A 99 00 23 STA $2300,Y
970D C8 INY
970E D0 F7 BNE $9707

(callback is here) copy the
code at $0300 to higher
memory so it survives a
reboot

9710 AD E8 C0 LDA $C0E8
9713 4C 00 C5 JMP $C500

*BSAVE TRACE,A$9600,L$116
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0300-03FF,A$2300,L$100
]CALL -151
*2301L
2301 84 48 STY $48

turn off slot 6 drive motor
and reboot to my work disk
in slot 5

2303 A0 00 LDY #$00
2305 98 TYA
2306 A2 20 LDX #$20
2308 99 00 40 STA $4000,Y
230B C8 INY
230C D0 FA BNE $2308
230E EE 0A 03 INC $030A
2311 CA DEX
2312 D0 F4 BNE $2308

clear hi-res graphics screen 2

2314 AD 57 C0 LDA $C057
2317 AD 52 C0 LDA $C052
231A AD 55 C0 LDA $C055
231D AD 50 C0 LDA $C050

and show it (appears blank)

2320 B9 00 03 LDA $0300,Y
2323 45 48 EOR $48
2325 99 00 01 STA $0100,Y
2328 C8 INY
2329 D0 F5 BNE $2320

decrypt the rest of this page
to the stack page at $0100

232B A2 CF LDX #$CF
232D 9A TXS

set the stack pointer

232E 60 RTS and exit via RTS

Oh joy, stack manipulation. The stack on
an Apple II is just $100 bytes in main memory
($0100..$01FF) and a single byte register that
serves as an index into that page. This allows for
all manner of mischief—overwriting the stack page
(as we’re doing here), manually changing the stack
pointer (also doing that here), or even putting exe-
cutable code directly on the stack.

The upshot is that I have no idea where exe-
cution continues next, because I don’t know what
ends up on the stack page. I get to interrupt the
boot again to see the decrypted data that ends up
at $0100.

Mischief Managed
*BLOAD TRACE
[first part is the same as the
previous trace]

9705 84 48 STY $48
9707 A0 00 LDY #$00
9709 B9 00 03 LDA $0300,Y
970C 45 48 EOR $48
970E 99 00 21 STA $2100,Y
9711 C8 INY
9712 D0 F5 BNE $9709

reproduce the decryption
loop, but store the result at
$2100 so it survives a reboot

9714 AD E8 C0 LDA $C0E8
9717 4C 00 C5 JMP $C500

*BSAVE TRACE2,A$9600,L$11A
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0100-01FF,A$2100,L$100
]CALL -151

turn off drive motor and
reboot to my work disk
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The original code at $0300 manually reset the
stack pointer to #$CF and exited via RTS. The Ap-
ple II will increment the stack pointer before using
it as an index into $0100 to get the next address.
(For reasons I won’t get into here, it also increments
the address before passing execution to it.)

*21D0.
21D0 2F 01 FF 03 FF 04 4F 04

next return address

$012F + 1 = $0130, which is already in memory at
$2130.

Oh joy. Code on the stack. (Remember, the “s-
tack” is just a page in main memory. If you want to
use that page for something else, it’s up to you to
ensure that it doesn’t conflict with the stack func-
tioning as a stack.)

*2130L
2130 A2 04 LDX #$04
2132 86 86 STX $86
2134 A0 00 LDY #$00
2136 84 83 STY $83
2138 86 84 STX $84

Now ($83) points to $0400.

213A A6 2B LDX $2B get slot number (x16)

213C BD 8C C0 LDA $C08C,X
213F 10 FB BPL $213C
2141 C9 BF CMP #$BF
2143 D0 F7 BNE $213C
2145 BD 8C C0 LDA $C08C,X
2148 10 FB BPL $2145
214A C9 D7 CMP #$D7
214C D0 F3 BNE $2141
214E BD 8C C0 LDA $C08C,X
2151 10 FB BPL $214E
2153 C9 D5 CMP #$D5
2155 D0 F3 BNE $214A

find a 3-nibble prologue (“BF
D7 D5”)

2157 BD 8C C0 LDA $C08C,X
215A 10 FB BPL $2157
215C 2A ROL
215D 85 85 STA $85
215F BD 8C C0 LDA $C08C,X
2162 10 FB BPL $215F
2164 25 85 AND $85

read 4-4-encoded data

2166 91 83 STA ($83),Y
2168 C8 INY
2169 D0 EC BNE $2157

store in $0400 (text page, but
it’s hidden right now because
we switched to hi-res graphics
screen 2 at $0314)

216B 0E 00 C0 ASL $C000
216E BD 8C C0 LDA $C08C,X
2171 10 FB BPL $216E
2173 C9 D4 CMP #$D4
2175 D0 B9 BNE $2130

find a 1-nibble epilogue (“D4”)

2177 E6 84 INC $84 increment target memory
page

2179 C6 86 DEC $86
217B D0 DA BNE $2157

decrement sector count
(initialized at $0132)

217D 60 RTS exit via RTS

Wait, what? Ah, we’re using the same trick we
used to call this routine—the stack has been pre-
filled with a series of “return” addresses. It’s time to
“return” to the next one.

*21D0.
21D0 2F 01 FF 03 FF 04 4F 04

next return address

$03FF + 1 = $0400, and that’s where I get to in-
terrupt the boot.

Seek And Ye Shall Find
*BLOAD TRACE2
.
. [same as previous trace]
.
9705 84 48 STY $48
9707 A0 00 LDY #$00
9709 B9 00 03 LDA $0300,Y
970C 45 48 EOR $48
970E 99 00 01 STA $0100,Y
9711 C8 INY
9712 D0 F5 BNE $9709

reproduce the decryption loop
that was originally at $0320

9714 A9 21 LDA #$21
9716 8D D2 01 STA $01D2
9719 A9 97 LDA #$97
971B 8D D3 01 STA $01D3

now that the stack is in place
at $0100, change the first
return address so it points to
a callback under my control
(instead of continuing to
$0400)

971E A2 CF LDX #$CF
9720 9A TXS
9721 60 RTS

continue the boot

9722 A2 04 LDX #$04
9724 A0 00 LDY #$00
9726 B9 00 04 LDA $0400,Y
9729 99 00 24 STA $2400,Y
972C C8 INY
972D D0 F7 BNE $9726
972F EE 28 97 INC $9728
9732 EE 2B 97 INC $972B
9735 CA DEX
9736 D0 EE BNE $9726

(callback is here) copy the
contents of the text page to
higher memory
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9738 AD E8 C0 LDA $C0E8
973B 4C 00 C5 JMP $C500

*BSAVE TRACE3,A$9600,L$13E
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT1
0400-07FF,A$2400,L$400
]CALL -151

turn off the drive and reboot
to my work disk

I’m going to leave this code at $2400, since I
can’t put it on the text page and examine it at the
same time. Relative branches will look correct, but
absolute addresses will be off by $2000.

*2400L
2400 A0 00 LDY #$00
2402 B9 00 05 LDA $0500,Y
2405 99 00 BD STA $BD00,Y
2408 B9 00 06 LDA $0600,Y
240B 99 00 BE STA $BE00,Y
240E B9 00 07 LDA $0700,Y
2411 99 00 BF STA $BF00,Y
2414 C8 INY
2415 D0 EB BNE $2402

copy three pages to the top of
main memory

I can replicate that.
*FE89G FE93G ; disconnect DOS
*BD00<2500.27FFM ; simulate
copy loop
2417 A6 2B LDX $2B
2419 8E 66 BF STX $BF66
241C 20 48 BF JSR $BF48

*BF48L
BF48 AD 81 C0 LDA $C081
BF4B AD 81 C0 LDA $C081
BF4E A0 00 LDY #$00
BF50 A9 D0 LDA #$D0
BF52 84 A0 STY $A0
BF54 85 A1 STA $A1
BF56 B1 A0 LDA ($A0),Y
BF58 91 A0 STA ($A0),Y
BF5A C8 INY
BF5B D0 F9 BNE $BF56
BF5D E6 A1 INC $A1
BF5F D0 F5 BNE $BF56
BF61 2C 80 C0 BIT $C080
BF64 60 RTS

zap contents of language card

Continuing from $041F. . .

241F AD 83 C0 LDA $C083
2422 AD 83 C0 LDA $C083
2425 A0 00 LDY #$00
2427 A9 BF LDA #$BF
2429 8C FC FF STY $FFFC
242C 8D FD FF STA $FFFD
242F 8C F2 03 STY $03F2
2432 8D F3 03 STA $03F3
2435 A0 03 LDY #$03
2437 8C F0 03 STY $03F0
243A 8D F1 03 STA $03F1
243D 84 38 STY $38
243F 85 39 STA $39
2441 49 A5 EOR #$A5
2443 8D F4 03 STA $03F4

*BF00L

set low-level reset vectors and
page 3 vectors to point to
$BF00—presumably The
Badlands (from which there is
no return)

BF00 A9 D2 LDA #$D2
BF02 2C A9 D0 BIT $D0A9
BF05 2C A9 CC BIT $CCA9
BF08 2C A9 A1 BIT $A1A9
BF0B 48 PHA

There are multiple entry
points here: $BF00, $BF03,
$BF06, and $BF09 (hidden in
this listing by the “BIT”
opcodes).

BF0C 20 48 BF JSR $BF48 zap the language card again

BF0F 20 2F FB JSR $FB2F
BF12 20 58 FC JSR $FC58
BF15 20 84 FE JSR $FE84

TEXT/HOME/NORMAL

BF18 68 PLA
BF19 8D 00 04 STA $0400

Depending on the initial entry
point, this displays a different
character in the top left
corner of the screen

BF1C A0 00 LDY #$00
BF1E 98 TYA
BF1F 99 00 BE STA $BE00,Y
BF22 C8 INY
BF23 D0 FA BNE $BF1F
BF25 CE 21 BF DEC $BF21

now wipe all of main memory

BF28 2C 30 C0 BIT $C030
BF2B AD 21 BF LDA $BF21
BF2E C9 08 CMP #$08
BF30 B0 EA BCS $BF1C

while playing a sound

BF32 8D F3 03 STA $03F3
BF35 8D F4 03 STA $03F4

munge the reset vector

BF38 AD 66 BF LDA $BF66
BF3B 4A LSR
BF3C 4A LSR
BF3D 4A LSR
BF3E 4A LSR
BF3F 09 C0 ORA #$C0
BF41 E9 00 SBC #$00
BF43 48 PHA
BF44 A9 FF LDA #$FF
BF46 48 PHA
BF47 60 RTS

and reboot from whence we
came

Yeah, let’s try not to end up there.

Continuing from $0446. . .

2446 A9 07 LDA #$07
2448 20 00 BE JSR $BE00

*BE00L

BE00 A2 13 LDX #$13 entry point #1

BE02 2C A2 0A BIT $0AA2 entry point #2 (hidden
behind a BIT opcode, but it’s
“LDX #$0A”)

BE05 8E 6E BE STX $BE6E ! modify the code later
based on which entry point
we called
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BE08 8D 90 BE STA $BE90
BE0B CD 65 BF CMP $BF65
BE0E F0 59 BEQ $BE69
BE10 A9 00 LDA #$00
BE12 8D 91 BE STA $BE91
BE15 AD 65 BF LDA $BF65
BE18 8D 92 BE STA $BE92
BE1B 38 SEC
BE1C ED 90 BE SBC $BE90
BE1F F0 37 BEQ $BE58
BE21 B0 07 BCS $BE2A
BE23 49 FF EOR #$FF
BE25 EE 65 BF INC $BF65
BE28 90 05 BCC $BE2F
BE2A 69 FE ADC #$FE
BE2C CE 65 BF DEC $BF65
BE2F CD 91 BE CMP $BE91
BE32 90 03 BCC $BE37
BE34 AD 91 BE LDA $BE91
BE37 C9 0C CMP #$0C
BE39 B0 01 BCS $BE3C
BE3B A8 TAY
BE3C 38 SEC
BE3D 20 5C BE JSR $BE5C
BE40 B9 78 BE LDA $BE78,Y
BE43 20 6D BE JSR $BE6D
BE46 AD 92 BE LDA $BE92
BE49 18 CLC
BE4A 20 5F BE JSR $BE5F
BE4D B9 84 BE LDA $BE84,Y
BE50 20 6D BE JSR $BE6D
BE53 EE 91 BE INC $BE91
BE56 D0 BD BNE $BE15
BE58 20 6D BE JSR $BE6D
BE5B 18 CLC
BE5C AD 65 BF LDA $BF65
BE5F 29 03 AND #$03
BE61 2A ROL
BE62 0D 66 BF ORA $BF66
BE65 AA TAX
BE66 BD 80 C0 LDA $C080,X
BE69 AE 66 BF LDX $BF66
BE6C 60 RTS

The rest of this routine is a
garden variety drive seek. The
target phase (track x 2) is in
the accumulator on entry.

BE6D A2 13 LDX #$13
BE6F CA DEX
BE70 D0 FD BNE $BE6F
BE72 38 SEC
BE73 E9 01 SBC #$01
BE75 D0 F6 BNE $BE6D
BE77 60 RTS
BE78 [01 30 28 24 20 1E 1D 1C]
BE80 [1C 1C 1C 1C 70 2C 26 22]
BE88 [1F 1E 1D 1C 1C 1C 1C 1C]

(value of X may be modified
depending on which entry
point was called)

The fact that there are two entry points is in-
teresting. Calling $BE00 will set X to #$13, which
will end up in $BE6E, so the wait routine at $BE6D
will wait long enough to go to the next phase (a.k.a.
half a track). Nothing unusual there; that’s how all
drive seek routines work. But calling $BE03 instead
of $BE00 will set X to #$0A, which will make the wait
routine burn fewer CPU cycles while the drive head
is moving, so it will only move half a phase (a.k.a. a
quarter track). That is potentially very interesting.

Continuing from $044B. . .

244B A9 05 LDA #$05
244D 85 33 STA $33
244F A2 03 LDX #$03
2451 86 36 STX $36
2453 A0 00 LDY #$00
2455 A5 33 LDA $33
2457 84 34 STY $34
2459 85 35 STA $35

Now ($34) points to $0500.

245B AE 66 BF LDX $BF66
245E BD 8C C0 LDA $C08C,X
2461 10 FB BPL $245E
2463 C9 B5 CMP #$B5
2465 D0 F7 BNE $245E
2467 BD 8C C0 LDA $C08C,X
246A 10 FB BPL $2467
246C C9 DE CMP #$DE
246E D0 F3 BNE $2463
2470 BD 8C C0 LDA $C08C,X
2473 10 FB BPL $2470
2475 C9 F7 CMP #$F7
2477 D0 F3 BNE $246C

find a 3-nibble prologue (“B5
DE F7”)

2479 BD 8C C0 LDA $C08C,X
247C 10 FB BPL $2479
247E 2A ROL
247F 85 37 STA $37
2481 BD 8C C0 LDA $C08C,X
2484 10 FB BPL $2481
2486 25 37 AND $37
2488 91 34 STA ($34),Y
248A C8 INY
248B D0 EC BNE $2479
248B D0 EC BNE $2479
248D 0E FF FF ASL $FFFF

read 4-4-encoded data into
$0500+

2490 BD 8C C0 LDA $C08C,X
2493 10 FB BPL $2490
2495 C9 D5 CMP #$D5
2497 D0 B6 BNE $244F
2499 E6 35 INC $35

find a 1-nibble epilogue (“D5”)

249B C6 36 DEC $36
249D D0 DA BNE $2479

3 sectors (initialized at $0451)

249F 60 RTS and exit via RTS

We’ve read 3 more sectors into $0500+, overwrit-
ing the code we read earlier (but moved to $BD00+),
and once again we simply exit and let the stack tell
us where we’re going next.

*21D0.
21D0 2F 01 FF 03 FF 04 4F 04

next return address

$04FF+ 1 = $0500, the code we just read.

And that’s where I get to interrupt the boot.
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Return of the Jedi

*C500G
. . .
]CALL -151
*BLOAD TRACE3
.
. [same as previous trace]
.

reboot because I disconnected
and overwrote DOS to
examine the previous code
chunk at $BD00+

9714 A9 21 LDA #$21
9716 8D D4 01 STA $01D4
9719 A9 97 LDA #$97
971B 8D D5 01 STA $01D5

Patch the stack again, but
slightly later, at $01D4. (The
previous trace patched it at
$01D2.)

971E A2 CF LDX #$CF
9720 9A TXS
9721 60 RTS

continue the boot

9722 A2 04 LDX #$03
9724 A0 00 LDY #$00
9726 B9 00 05 LDA $0500,Y
9729 99 00 25 STA $2500,Y
972C C8 INY
972D D0 F7 BNE $9726
972F EE 28 97 INC $9728
9732 EE 2B 97 INC $972B
9735 CA DEX
9736 D0 EE BNE $9726

(callback is here) We just
executed all the code up to
and including the “RTS” at
$049F, so now let’s copy the
latest code at $0500..$07FF to
higher memory so it survives
a reboot.

9738 AD E8 C0 LDA $C0E8
973B 4C 00 C5 JMP $C500

*BSAVE TRACE4,A$9600,L$13E
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT2
0500-07FF,A$2500,L$300
]CALL -151

reboot to my work disk

Again, I’m going to leave this at $2500 because
I can’t examine code on the text page. Relative
branches will look correct, but absolute addresses
will be off by $2000.

*2500L
2500 A9 02 LDA #$02
2502 20 00 BE JSR $BE00

seek to track 1

2505 AE 66 BF LDX $BF66
2508 A0 00 LDY #$00
250A A9 20 LDA #$20
250C 85 30 STA $30
250E 88 DEY
250F D0 04 BNE $2515
2511 C6 30 DEC $30
2513 F0 3C BEQ $2551

get slot number x16 (set a
long time ago, at $0419)

2515 BD 8C C0 LDA $C08C,X
2518 10 FB BPL $2515
251A C9 D5 CMP #$D5
251C D0 F0 BNE $250E
251E BD 8C C0 LDA $C08C,X
2521 10 FB BPL $251E
2523 C9 FF CMP #$FF
2525 D0 F3 BNE $251A
2527 BD 8C C0 LDA $C08C,X
252A 10 FB BPL $2527
252C C9 DD CMP #$DD
252E D0 F3 BNE $2523

find a 3-nibble prologue (“D5
FF DD”)

2530 A0 00 LDY #$00
2532 BD 8C C0 LDA $C08C,X
2535 10 FB BPL $2532
2537 38 SEC
2538 2A ROL
2539 85 30 STA $30
253B BD 8C C0 LDA $C08C,X
253E 10 FB BPL $253B
2540 25 30 AND $30

read 4-4-encoded data

2542 99 00 B0 STA $B000,Y
2545 C8 INY
2546 D0 EA BNE $2532

into $B000 (hard-coded here,
was not modified earlier
unless I missed something)

2548 BD 8C C0 LDA $C08C,X
254B 10 FB BPL $2548
254D C9 D5 CMP #$D5
254F F0 0B BEQ $255C

find a 1-nibble epilogue (“D5”)

2551 A0 00 LDY #$00
2553 B9 00 07 LDA $0700,Y
2556 99 00 B0 STA $B000,Y
2559 C8 INY
255A D0 F7 BNE $2553

This is odd. If the epilogue
doesn’t match, it’s not an
error. Instead, it appears that
we simply copy a page of data
that we read earlier (at
$0700).

255C 20 F0 05 JSR $05F0

*25F0L

execution continues here
regardless

25F0 A0 56 LDY #$56
25F2 A9 BD LDA #$BD
25F4 48 PHA
25F5 A9 FF LDA #$FF
25F7 48 PHA
25F8 A9 07 LDA #$07
25FA 60 RTS

Weird, but OK. This ends up
calling $BE00 with A=$07,
which will seek to track 3.5.

And now we’re on half tracks.

Continuing from $055F. . .

255F BD 8C C0 LDA $C08C,X
2562 10 FB BPL $255F
2564 C9 DD CMP #$DD
2566 D0 F7 BNE $255F
2568 BD 8C C0 LDA $C08C,X
256B 10 FB BPL $2568
256D C9 EF CMP #$EF
256F D0 F3 BNE $2564
2571 BD 8C C0 LDA $C08C,X
2574 10 FB BPL $2571
2576 C9 AD CMP #$AD
2578 D0 F3 BNE $256D

find a 3-nibble prologue ("DD
EF AD")
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257A A0 00 LDY #$00
257C BD 8C C0 LDA $C08C,X
257F 10 FB BPL $257C
2581 38 SEC
2582 2A ROL
2583 85 00 STA $00
2585 BD 8C C0 LDA $C08C,X
2588 10 FB BPL $2585
258A 25 00 AND $00

read a 4-4 encoded byte (two
nibbles on disk = 1 byte in
memory)

258C 48 PHA push the byte to the stack
(WTF?)

258D 88 DEY
258E D0 EC BNE $257C

repeat for $100 bytes

2590 BD 8C C0 LDA $C08C,X
2593 10 FB BPL $2590
2595 C9 D5 CMP #$D5
2597 D0 C3 BNE $255C

2599 CE 9C 05 DEC $059C !
259C 61 00 ADC ($00,X)

find a 1-nibble epilogue
("D5")

! Self-modifying code alert! WOO WOO. I’ll
use this symbol whenever one instruction modifies
the next instruction. When this happens, the dis-
assembly listing is misleading because the opcode
will be changed by the time the second instruction
is executed.

In this case, the DEC at $0599 modifies the op-
code at $059C, so that’s not really an “ADC.” By
the time we execute the instruction at $059C, it will
have been decremented to #$60, a.k.a. “RTS.”

One other thing: we’ve read $100 bytes and
pushed all of them to the stack. The stack is
only $100 bytes ($0100..$01FF), so this completely
obliterates any previous values.

We haven’t changed the stack pointer, though.
That means the “RTS‘” at $059C will still look at
$01D6 to find the next “return” address. That used
to be “4F 04”, but now it’s been overwritten with
new values, along with the rest of the stack. That’s
some serious Jedi mind trick stuff.

“These aren’t the return addresses you’re looking
for.”

“These aren’t the return addresses we’re looking
for.”

“He can go about his bootloader.”
“You can go about your bootloader.”
“Move along.”
“Move along. . . move along.”

In Which We Move Along

Luckily, there’s plenty of room at $0599. I can insert
a JMP to call back to code under my control, where
I can save a copy of the stack. (And $B000 as well,

whatever that is.) I get to ensure I don’t disturb
the stack before I save it, so no JSR, PHA, PHP,
or TXS. I think I can manage that. JMP doesn’t
disturb the stack, so that’s safe for the callback.

*BLOAD TRACE4
.
. [same as previous trace]
.
9722 A9 4C LDA #$4C
9724 8D 99 05 STA $0599
9727 A9 34 LDA #$34
9729 8D 9A 05 STA $059A
972C A9 97 LDA #$97
972E 8D 9B 05 STA $059B

set up a JMP $9734 at $0599

9731 4C 00 05 JMP $0500 continue the boot

9734 A0 00 LDY #$00
9736 B9 00 B0 LDA $B000,Y
9739 99 00 20 STA $2000,Y
973C B9 00 01 LDA $0100,Y
973F 99 00 21 STA $2100,Y
9742 C8 INY
9743 D0 F1 BNE $9736

(callback is here) Copy $B000
and $0100 to higher memory
so they survive a reboot

9745 AD E8 C0 LDA $C0E8
9748 4C 00 C5 JMP $C500

*BSAVE TRACE5,A$9600,L$14B
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT2
B000-B0FF,A$2000,L$100
]BSAVE BOOT2
0100-01FF,A$2100,L$100
]CALL -151

reboot to my work disk

Remember, the stack pointer hasn’t changed. Now
that I have the new stack data, I can just look at the
right index in the captured stack page to see where
the bootloader continues once it issues the “RTS” at
$059C.

*21D0.
21D0 2F 01 FF 03 FF 04 4F 04

next return address

That’s part of the stack page I just captured, so it’s
already in memory.

*2126L

Another disk read routine! The fourth? Fifth?
I’ve truly lost count.

2126 BD 8C C0 LDA $C08C,X
2129 10 FB BPL $2126
212B C9 BF CMP #$BF
212D D0 F7 BNE $2126
212F BD 8C C0 LDA $C08C,X
2132 10 FB BPL $212F
2134 C9 BE CMP #$BE
2136 D0 F3 BNE $212B
2138 BD 8C C0 LDA $C08C,X
213B 10 FB BPL $2138
213D C9 D4 CMP #$D4
213F D0 F3 BNE $2134

find a 3-nibble prologue ("BF
BE D4")
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2141 A0 00 LDY #$00
2143 BD 8C C0 LDA $C08C,X
2146 10 FB BPL $2143
2148 38 SEC
2149 2A ROL
214A 8D 00 02 STA $0200
214D BD 8C C0 LDA $C08C,X
2150 10 FB BPL $214D
2152 2D 00 02 AND $0200

read 4-4-encoded data

2155 59 00 01 EOR $0100,Y decrypt the data from disk by
using this entire page of code
(in the stack page) as the
decryption key (more on this
later)

2158 99 00 00 STA $0000,Y
215B C8 INY
215C D0 E5 BNE $2143

and store it in zero page

215E BD 8C C0 LDA $C08C,X
2161 10 FB BPL $215E
2163 C9 D5 CMP #$D5
2165 D0 BF BNE $2126

find a 1-nibble epilogue
("D5")

2167 60 RTS and exit via RTS

And we’re back on the stack again.
*21D0.
21D0 F0 78 AD D8 02 85 25 01
21D8 57 FF 57 FF 57 FF 57 FF
21E0 57 FF 22 01 FF 05 B1 4C

The six 57 FF words and the following 22 01 word
are the next return addresses.

$FF57 + 1 = $FF58, which is a well-known ad-
dress in ROM that is always an “RTS” instruction.
So this will burn through several return addresses
on the stack in short order, then finally arrive at
$0123, in memory at $2123.

*2123L
2123 6C 28 00 JMP ($0028)

. . .which is in the new zero page that was just read
from disk.

And to think, we’ve loaded basically nothing of
consequence yet. The screen is still black. We have
3 pages of code at $BD00..$BFFF. There’s still some
code on the text screen, but who knows if we’ll ever
call it again. Now we’re off to zero page for some
reason.

Un. Be. Lievable.

By Perseverance The Snail Reached
The Ark

I can’t touch the code on the stack, because it’s used
as a decryption key. I mean, I could theoretically
change a few bytes of it, then calculate the proper
decrypted bytes on zero page by hand. But no.

Instead, I’m just going to copy this latest disk
routine wholesale. It’s short and has no external de-

pendencies, so why not? Then I can capture the de-
crypted zero page and see where that JMP ($0028)
is headed.

*BLOAD TRACE5
*9734<2126.2166M

Here’s the entire disassembly listing of boot
trace #6:

96F8 A9 05 LDA #$05
96FA 8D 38 08 STA $0838
96FD A9 97 LDA #$97
96FF 8D 39 08 STA $0839

patch boot0 so it calls my
routine instead of jumping to
$0301

9702 4C 01 08 JMP $0801 start the boot

9705 84 48 STY $48
9707 A0 00 LDY #$00
9709 B9 00 03 LDA $0300,Y
970C 45 48 EOR $48
970E 99 00 01 STA $0100,Y
9711 C8 INY
9712 D0 F5 BNE $9709

(callback #1 is here)
reproduce the decryption loop
that was originally at $0320

9714 A9 21 LDA #$21
9716 8D D4 01 STA $01D4
9719 A9 97 LDA #$97
971B 8D D5 01 STA $01D5

patch the stack so it jumps to
my callback #2 instead of
continuing to $0500

971E A2 CF LDX #$CF
9720 9A TXS
9721 60 RTS

continue the boot

9722 A9 4C LDA #$4C
9724 8D 99 05 STA $0599
9727 A9 34 LDA #$34
9729 8D 9A 05 STA $059A
972C A9 97 LDA #$97
972E 8D 9B 05 STA $059B

(callback #2) set up callback
#3 instead of passing control
to the disk read routine at
$0126

9731 4C 00 05 JMP $0500 continue the boot

9734 BD 8C C0 LDA $C08C,X
9737 10 FB BPL $9734
9739 C9 BF CMP #$BF
973B D0 F7 BNE $9734
973D BD 8C C0 LDA $C08C,X
9740 10 FB BPL $973D
9742 C9 BE CMP #$BE
9744 D0 F3 BNE $9739
9746 BD 8C C0 LDA $C08C,X
9749 10 FB BPL $9746
974B C9 D4 CMP #$D4
974D D0 F3 BNE $9742
974F A0 00 LDY #$00
9751 BD 8C C0 LDA $C08C,X
9754 10 FB BPL $9751
9756 38 SEC
9757 2A ROL
9758 8D 00 02 STA $0200
975B BD 8C C0 LDA $C08C,X
975E 10 FB BPL $975B
9760 2D 00 02 AND $0200
9763 59 00 01 EOR $0100,Y
9766 99 00 00 STA $0000,Y
9769 C8 INY
976A D0 E5 BNE $9751
976C BD 8C C0 LDA $C08C,X
976F 10 FB BPL $976C
9771 C9 D5 CMP #$D5
9773 D0 BF BNE $9734

(callback #3) disk read
routine copied wholesale from
$0126..$0166 that reads a
sector and decrypts it into
zero page
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execution falls through here

9775 A0 00 LDY #$00
9777 B9 00 00 LDA $0000,Y
977A 99 00 20 STA $2000,Y
977D C8 INY
977E D0 F7 BNE $9777

now capture the decrypted
zero page

9780 AD E8 C0 LDA $C0E8 turn off the slot 6 drive motor

9783 4C 00 C5 JMP $C500

*BSAVE TRACE6,A$9600,L$186

reboot to my work disk

*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE BOOT3
0000-00FF,A$2000,L$100
]CALL -151
*2028.2029
2028 D0 06

Whew. Let’s do it.

OK, the JMP ($0028) points to $06D0, which
I captured earlier. It’s part of the second chunk
we read into the text page. (Not the first chunk—
that was copied to $BD00+ then overwritten.) So
it’s in the “BOOT2 0500-07FF” file, not the “BOOT1
0400-07FF” file.

*BLOAD BOOT2 0500-07FF,A$2500
*26D0L
26D0 A2 00 LDX #$00
26D2 EE D5 06 INC $06D5 !
26D5 C9 EE CMP #$EE

Oh joy, more self-modifying code.
*26D5:CA
*26D5L
26D5 CA DEX
26D6 EE D9 06 INC $06D9 !
26D9 0F ???

*26D9:10
*26D9L
26D9 10 FB BPL $26D6
26DB CE DE 06 DEC $06DE !
26DE 61 A0 ADC ($A0,X)

*26DE:60
*26DEL
26DE 60 RTS

branch is never taken,
because we just DEX’d from
#$00 to #$FF

And now we’re back on the stack.
*BLOAD BOOT2 0100-01FF,A$2100

*21E0.
*21E0. 57 FF 22 01 FF 05 B1 4C

next return address

$05FF + 1 = $0600, which is already in memory at
$2600.

*2600L
2600 A0 00 LDY #$00
2602 48 PHA
2603 88 DEY
2604 D0 FC BNE $2602

destroy stack by pushing the
same value $100 times

I guess we’re done with all that code on the stack
page. I mean, I hope we’re done with it, since it all
just disappeared.

2606 A2 FF LDX #$FF
2608 9A TXS

2609 EE 0C 06 INC $060C !
260C A8 TAY

reset the stack pointer

Oh joy.
*260C:A9
*260CL
260C A9 27 LDA #$27
260E EE 11 06 INC $0611 !
2611 17 ???

*2611:18
*2611L
2611 18 CLC
2612 EE 15 06 INC $0615 !
2615 68 PLA

*2615:69
*2615L
2615 69 D9 ADC #$D9
2617 EE 1A 06 INC $061A !
261A 4B ???

*261A:4C
*261AL
261A 4C 90 FD JMP $FD90

Wait, what?
*FD90L
FD90 D0 5B BNE $FDED

Despite the fact that the accumulator is #$00
(because #$27 + #$D9 = #$00), the INC at $0617
affects the Z register and causes this branch to be
taken, because the final value of $061A was not zero.

*FDEDL
FDED 6C 36 00 JMP ($0036)

Of course, this is the standard output character
routine, which routes through the output vector at
($0036). And we just set that vector, along with
the rest of zero page. So what is it?

*2036.2037
2036 6F BF

Oh joy. Let’s see, $BD00..$BFFF was copied ear-
lier from $0500..$07FF, but from the first time we
read into the text page, not the second time we read
into text page. So it’s in the “BOOT1 0400-07FF”
file, not the “BOOT2 0500-07FF” file.

*BLOAD BOOT1 0400-07FF,A$2400

*FE89G FE93G disconnect DOS
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*BD00<2500.27FFM
*BF6FL
BF6F C9 07 CMP #$07
BF71 90 03 BCC $BF76
BF73 6C 3A 00 JMP ($003A)

*203A.203B
203A F0 FD

move code into place

BF76 85 5F STA $5F save input value

BF78 A8 TAY
BF79 B9 68 BF LDA $BF68,Y

use value as an index into an
array

BF7C 8D 82 BF STA $BF82
BF7F A9 00 LDA #$00
BF81 20 D0 BE JSR $BED0

! self-modifying code
alert—this changes the
upcoming JSR at $BF81

Amazing. So this “output” vector does actually
print characters through the standard $FDF0 text
print routine, but only if the character to be printed
is at least #$07. If it’s less than #$07, the “charac-
ter” is treated as a command. Each command gets
routed to a different routine somewhere in $BExx.
The low byte of each routine is stored in the ar-
ray at $BF68, and the “STA” at $BF7C modifies the
“JSR” at $BF81 to call the appropriate address.

*BF68.
BF68 D0 DF D0 D0 FD FD D0

Since A = #$00 this time, the call is unchanged
and we JSR $BED0. Other input values may call
$BEDF or $BEFD instead.

*BED0L
BED0 A5 60 LDA $60
BED2 4D 50 C0 EOR $C050
BED5 85 60 STA $60
BED7 29 0F AND #$0F

use the "value" of $C050 to
produce a pseudo-random
number between #$01 and
#$0E

BED9 F0 F5 BEQ $BED0 not #$00

BEDB C9 0F CMP #$0F
BEDD F0 F1 BEQ $BED0

not #$0F

BEDF 20 66 F8 JSR $F866 set the lo-res plotting color
(in zero page $30) to the
random-ish value we just
produced

BEE2 A9 17 LDA #$17
BEE4 48 PHA

fill the lo-res graphics screen
with blocks of that color

BEE5 20 47 F8 JSR $F847
BEE8 A0 27 LDY #$27
BEEA A5 30 LDA $30
BEEC 91 26 STA ($26),Y
BEEE 88 DEY
BEEF 10 FB BPL $BEEC
BEF1 68 PLA

calculates the base address for
this line in memory and puts
it in $26/$27

BEF2 38 SEC
BEF3 E9 01 SBC #$01
BEF5 10 ED BPL $BEE4

do it for all 24 ($17) rows of
the screen

BEF7 AD 56 C0 LDA $C056
BEFA AD 54 C0 LDA $C054
BEFD 60 RTS

and switch to lo-res graphics
mode

This explains why the original disk fills the
screen with a different color every time it boots.

But wait, these commands do so much more than
just fill the screen.

Continuing from $BF84. . .
BF84 A5 5F LDA $5F
BF86 C9 04 CMP #$04
BF88 D0 03 BNE $BF8D
BF8A 4C 00 BD JMP $BD00

If A = #$04, we exit via $BD00, which I’ll inves-
tigate later.

BF8D C9 05 CMP #$05
BF8F D0 03 BNE $BF94
BF91 6C 82 BF JMP ($BF82)

If A = #$05, we exit via ($BF82), which is the
same thing we just called via the self-modified JSR
at $BF81.

For all other values of A, we do this:
BF94 20 B0 BE JSR $BEB0

*BEB0L
BEB0 A2 60 LDX #$60
BEB2 BD 9F BF LDA $BF9F,X
BEB5 5D 00 BE EOR $BE00,X

another layer of encryption!

BEB8 9D 9F BF STA $BF9F,X
BEBB CA DEX
BEBC 10 F4 BPL $BEB2
BEBE AE 66 BF LDX $BF66
BEC1 60 RTS

and it’s decrypting the code
that we’re about to run

This is self-contained, so I can just run it right
now and see what ends up at $BF9F.

*BEB0G

Continuing from $BF97. . .
BF97 A0 00 LDY #$00
BF99 A9 B2 LDA #$B2
BF9B 84 44 STY $44
BF9D 85 45 STA $45

BF9F BD 89 C0 LDA $C089,X everything beyond this point
was encrypted, but we just
decrypted it in $BEB0

BFA2 BD 8C C0 LDA $C08C,X
BFA5 10 FB BPL $BFA2
BFA7 C5 40 CMP $40
BFA9 D0 F7 BNE $BFA2
BFAB BD 8C C0 LDA $C08C,X
BFAE 10 FB BPL $BFAB
BFB0 C5 41 CMP $41
BFB2 D0 F3 BNE $BFA7
BFB4 BD 8C C0 LDA $C08C,X
BFB7 10 FB BPL $BFB4
BFB9 C5 42 CMP $42
BFBB D0 F3 BNE $BFB0

find a 3-nibble prologue
(varies, based on whatever
the hell is in zero page
$40/$41/$42 at this point)
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BFBD BD 8C C0 LDA $C08C,X
BFC0 10 FB BPL $BFBD
BFC2 38 SEC
BFC3 2A ROL
BFC4 85 46 STA $46
BFC6 BD 8C C0 LDA $C08C,X
BFC9 10 FB BPL $BFC6
BFCB 25 46 AND $46

read 4-4-encoded data

BFCD 91 44 STA ($44),Y
BFCF C8 INY
BFD0 D0 EB BNE $BFBD
BFD2 E6 45 INC $45
BFD4 BD 8C C0 LDA $C08C,X
BFD7 10 FB BPL $BFD4
BFD9 C5 43 CMP $43
BFDB D0 BA BNE $BF97

store in memory starting at
$B200 (set at $BF9B)

BFDD A5 45 LDA $45
BFDF 49 B5 EOR #$B5
BFE1 D0 DA BNE $BFBD
BFE3 48 PHA ; A=00
BFE4 A5 45 LDA $45 ;
A=B5
BFE6 49 8E EOR #$8E ;
A=3B
BFE8 48 PHA
BFE9 60 RTS

read into $B200, $B300, and
$B400, then stop

So we push #$00 and #$3B to the stack, then
exit via RTS. That will “return” to $003C, which is
in memory at $203C.

*203CL
203C 4C 00 B2 JMP $B200

And that’s the code we just read from disk,
which means I get to set up another boot trace to
capture it.

In Which We Flutter For A Day And
Think It Is Forever

I’ll reboot my work disk again, since I disconnected
DOS to examine the code at $BD00..$BFFF.

*C500G
. . .
]CALL -151
*BLOAD TRACE6
.
. [same as previous trace, up
to and
. including the inline disk
read
. routine copied from $0126
that
. decrypts a sector into zero
page]
.
9775 A9 80 LDA #$80
9777 85 3D STA $3D
9779 A9 97 LDA #$97
977B 85 3E STA $3E

change the JMP address at
$003C so it points to my
callback instead of continuing
to $B200

977D 4C 00 06 JMP $0600 continue the boot

9780 A2 03 LDX #$03
9782 B9 00 B2 LDA $B200,Y
9785 99 00 22 STA $2200,Y
9788 C8 INY
9789 D0 F7 BNE $9782
978B EE 84 97 INC $9784
978E EE 87 97 INC $9787
9791 CA DEX
9792 D0 EE BNE $9782

(callback is here) copy the
new code to the graphics page
so it survives a reboot

9794 AD E8 C0 LDA $C0E8
9797 4C 00 C5 JMP $C500

*BSAVE TRACE7,A$9600,L$19A
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE
OBJ.B200-B4FF,A$2200,L$300
]CALL -151
*B200<2200.24FFM
*B200L
B200 A9 04 LDA #$04
B202 20 00 B4 JSR $B400
B205 A9 00 LDA #$00
B207 85 5A STA $5A
B209 20 00 B3 JSR $B300
B20C 4C 00 B5 JMP $B500

reboot to my work disk

$B400 is a disk seek routine, identical to the one
at $BE00. (It even has the same dual entry points
for seeking by half track and quarter track, at $B400
and $B403.) There’s nothing at $B500 yet, so the
routine at $B300 must be another disk read.

*B300L

B300 A0 00 LDY #$00
B302 A9 B5 LDA #$B5
B304 84 59 STY $59
B306 48 PHA
B307 20 30 B3 JSR $B330

*B330L

some zero page initialization

B330 48 PHA
B331 A5 5A LDA $5A
B333 29 07 AND #$07
B335 A8 TAY
B336 B9 50 B3 LDA $B350,Y
B339 85 50 STA $50
B33B A5 5A LDA $5A
B33D 4A LSR
B33E 09 AA ORA #$AA
B340 85 51 STA $51
B342 A5 5A LDA $5A
B344 09 AA ORA #$AA
B346 85 52 STA $52
B348 68 PLA
B349 E6 5A INC $5A
B34B 4C 60 B3 JMP $B360

*B350.
B350 D5 B5 B7 BC DF D4 B4 DB

more zero page initialization

That could be an array of nibbles. Maybe a ro-
tating prologue? Or a decryption key?

Oh joy. Another disk read routine.
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*B360L
B360 85 54 STA $54
B362 A2 02 LDX #$02
B364 86 57 STX $57
B366 A0 00 LDY #$00
B368 A5 54 LDA $54
B36A 84 55 STY $55
B36C 85 56 STA $56

B36E AE 66 BF LDX $BF66
B371 BD 8C C0 LDA $C08C,X
B374 10 FB BPL $B371
B376 C5 50 CMP $50
B378 D0 F7 BNE $B371
B37A BD 8C C0 LDA $C08C,X
B37D 10 FB BPL $B37A
B37F C5 51 CMP $51
B381 D0 F3 BNE $B376
B383 BD 8C C0 LDA $C08C,X
B386 10 FB BPL $B383
B388 C5 52 CMP $52
B38A D0 F3 BNE $B37F

find a 3-nibble prologue
(varies, based on the zero
page locations that were
initialized at $B330 based on
the array at $B350)

B38C BD 8C C0 LDA $C08C,X
B38F 10 FB BPL $B38C
B391 2A ROL
B392 85 58 STA $58
B394 BD 8C C0 LDA $C08C,X
B397 10 FB BPL $B394
B399 25 58 AND $58

read a 4-4-encoded sector

B39B 91 55 STA ($55),Y
B39D C8 INY
B39E D0 EC BNE $B38C

store the data into ($55)

B3A0 0E FF FF ASL $FFFF
B3A3 BD 8C C0 LDA $C08C,X
B3A6 10 FB BPL $B3A3
B3A8 C9 D4 CMP #$D4
B3AA D0 B6 BNE $B362
B3AC E6 56 INC $56
B3AE C6 57 DEC $57
B3B0 D0 DA BNE $B38C
B3B2 60 RTS

find a 1-nibble epilogue
("D4")

Let’s see:
$57 is the sector count. Initially #$02 (set at

$B364), decremented at $B3AE.
$56 is the target page in memory. Set at $B36C

to the accumulator, which is set at $B368 to the
value of address $54, which is set at $B360 to the ac-
cumulator, which is set at $B348 by the PLA, which
was pushed to the stack at $B330, which was origi-
nally set at $B302 to a constant value of #$B5. Then
$56 is incremented (at $B3AC) after reading and de-
coding $100 bytes worth of data from disk.

$55 is #$00, as set at $B36A.
So this reads two sectors into $B500..$B6FF and

returns to the caller.
Backtracking to $B30A. . .

B30A A4 59 LDY $59
B30C 18 CLC

$59 is initially #$00 (set at
$B304)

B30D AD 65 BF LDA $BF65 current phase (track x 2)

B310 79 28 B3 ADC $B328,Y new phase

B313 20 03 B4 JSR $B403 move the drive head to the
new phase, but using the
second entry point, which
uses a reduced timing loop (!)

B316 68 PLA this pulls the value that was
pushed to the stack at $B306,
which was the target memory
page to store the data being
read from disk by the routine
at $B360

B317 18 CLC
B318 69 02 ADC #$02

page += 2

B31A A4 59 LDY $59
B31C C8 INY

counter += 1

B31D C0 04 CPY #$04
B31F 90 E3 BCC $B304
B321 60 RTS

loop for 4 iterations

So we’re reading two sectors at a time, four
times, into $B500+. 2 x 4 = 8, so we’re loading
into $B500..$BCFF. That completely fills the gap
in memory between the code at $B200..$B4FF (this
chunk) and the code at $BD00..$BFFF (copied much
earlier), which strongly suggests that my analysis is
correct.

But what’s going on with the weird drive seek-
ing?

There is some definite weirdness here, and it’s
centered around the array at $B328. At $B200, we
called the main entry point for the drive seek rou-
tine at $B400 to seek to track 2. Now, after reading
two sectors, we’re calling the secondary entry point
(at $B403) to seek. . . where exactly?

*B328.
B328 01 FF 01 00 00 00 00 00

Aha! This array is the differential to get the
drive to seek forward or back. At $B200, we seeked
to track 2. The first time through this loop at
$B304, we read two sectors into $B500..$B6FF, then
add 1 to the current phase, because $B328 = #$01.
Normally this would seek forward a half track, to
track 2.5, but because we’re using the reduced tim-
ing loop, we only seek forward by a quarter track,
to track 2.25.

The second time through the loop, we read two
sectors into $B700..$B8FF, then subtract 1 from the
phase (because $B329 = #$FF) and seek backwards
by a quarter track. Now we’re back on track 2.0.

The third time, we read two sectors from track
2.25 into $B900..$BAFF, then seek forward by a
quarter track, because $B32A = #$01.

The fourth and final time, we read the final two
sectors from track 2.25 into $BB00..$BCFF.
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1.75    2.0     2.25    2.5    2.75

        B500

        B600

               B700

               B800

        B900

        BA00

               BB00

               BC00

This explains the little “fluttering” noise the orig-
inal disk makes during this phase of the boot. It’s
flipping back and forth between adjacent quarter
tracks, reading two sectors from each.

Boy am I glad I’m not trying to copy this disk
with a generic bit copier. That would be nearly im-
possible, even if I knew exactly which tracks were
split like this.

In Which The Floodgates Burst Open
*BLOAD TRACE7
.
. [same as previous trace]
.
9780 A9 8D LDA #$8D
9782 8D 0D B2 STA $B20D
9785 A9 97 LDA #$97
9787 8D 0E B2 STA $B20E

interrupt the boot at $B20C
after it calls $B300 but before
it jumps to the new code at
$B500

978A 4C 00 B2 JMP $B200 continue the boot

978D A2 08 LDX #$08
978F A0 00 LDY #$00
9791 B9 00 B5 LDA $B500,Y
9794 99 00 25 STA $2500,Y
9797 C8 INY
9798 D0 F7 BNE $9791
979A EE 93 97 INC $9793
979D EE 96 97 INC $9796
97A0 CA DEX
97A1 D0 EE BNE $9791

(callback is here) capture the
code at $B500..$BCFF so it
survives a reboot

97A3 AD E8 C0 LDA $C0E8
97A6 4C 00 C5 JMP $C500

*BSAVE TRACE8,A$9600,L$1A9
*9600G
. . .reboots slot 6. . .
. . .reboots slot 5. . .
]BSAVE
OBJ.B500-BCFF,A$2500,L$800
]CALL -151
*B500<2500.2CFFM
*B500L

reboot to my work disk

B500 AE 5F 00 LDX $005F same command ID (saved at
$BF76) that was "printed"
earlier (passed to the routine
at $BF6F via $FDED)

B503 BD 80 B5 LDA $B580,X use command ID as an index
into this new array

B506 8D 0A B5 STA $B50A ! store the array value in the
middle of the next JSR
instruction

B509 20 50 B5 JSR $B550

*B580.
B580 50 58 68 70 00 00 58

and call it (modified based on
the previous lookup)

The high byte of the JSR address never changes,
so depending on the command ID, we’re calling

• 00 => $B550

• 01 => $B558

• 02 => $B568

• 03 => $B570

• 06 => $B558 again

A nice, compact jump table.
*B550L
B550 A9 09 LDA #$09
B552 A0 00 LDY #$00
B554 4C 00 BA JMP $BA00

*B558L
B558 A9 19 LDA #$19
B55A A0 00 LDY #$00
B55C 20 00 BA JSR $BA00
B55F A9 29 LDA #$29
B561 A0 68 LDY #$68
B563 4C 00 BA JMP $BA00

*B568L
B568 A9 31 LDA #$31
B56A A0 00 LDY #$00
B56C 4C 00 BA JMP $BA00

*B570L
B570 A9 41 LDA #$41
B572 A0 A0 LDY #$A0
B574 4C 00 BA JMP $BA00

Those all look quite similar. Let’s see what’s at
$BA00.

*BA00L
BA00 48 PHA
BA01 84 58 STY $58

save the two input parameters
(A & Y)

BA03 20 00 BE JSR $BE00 seek the drive to a new phase
(given in A)

BA06 A2 00 LDX #$00
BA08 A4 58 LDY $58
BA0A B9 00 B9 LDA $B900,Y
BA0D 9D 00 BB STA $BB00,X
BA10 C8 INY
BA11 E8 INX

copy a number of bytes from
$B900,Y (Y was passed in
from the caller) to $BB00

BA12 E0 0C CPX #$0C
BA14 90 F4 BCC $BA0A

$0C bytes. Always exactly
$0C bytes.

What’s at $B900? All kinds of fun22 stuff.
22not guaranteed, actual fun may vary
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*B900.
B900 08 09 0A 0B 0C 0D 0E 0F
B908 10 11 12 13 14 15 16 17
B910 18 19 1A 1B 1C 1D 1E 1F
B918 20 21 22 23 24 25 26 27
B920 28 29 2A 2B 2C 2D 2E 2F
B928 30 31 32 33 34 35 36 37
B930 38 39 3A 3B 3C 3D 3E 3F
B938 60 61 62 63 64 65 66 67
B940 68 69 6A 6B 6C 6D 6E 6F
B948 70 71 72 73 74 75 76 77
B950 78 79 7A 7B 7C 7D 7E 7F
B958 80 81 82 83 84 85 86 87
B960 00 00 00 00 00 00 00 00

That looks suspiciously like a set of high bytes
for addresses in main memory. Note how it starts at
#$08 (immediately after the text page), then later
jumps from #$3F to #$60, skipping over hi-res page
2.

Continuing from $BA16. . .
BA16 20 30 BA JSR $BA30

*BA30L
BA30 AD 65 BF LDA $BF65 current phase

BA33 4A LSR
BA34 A2 03 LDX #$03

convert it to a track number

BA36 29 0F AND #$0F (track MOD $10)

BA38 A8 TAY
BA39 B9 10 BC LDA $BC10,Y

use that as the index into an
array

BA3C 95 50 STA $50,X
BA3E C8 INY
BA3F 98 TYA
BA40 CA DEX
BA41 10 F3 BPL $BA36

*BC10.
BC10 F7 F5 EF EE DF DD D6 BE
BC18 BD BA B7 B6 AF AD AB AA

and store it in zero page

All of those are valid nibbles. Maybe this is set-
ting up another rotating prologue for the next disk
read routine?

Continuing from $BA43. . .
BA43 4C 0C BB JMP $BB0C

*BB0CL

Oh joy. Another disk read routine.

BB0C A2 0C LDX #$0C
BB0E 86 54 STX $54

I think $54 is the sector count

BB10 A0 00 LDY #$00
BB12 8C 54 BB STY $BB54
BB15 84 55 STY $55

and $55 is the logical sector
number

BB17 AE 66 BF LDX $BF66
BB1A BD 8C C0 LDA $C08C,X
BB1D 10 FB BPL $BB1A
BB1F C5 50 CMP $50
BB21 D0 F7 BNE $BB1A
BB23 BD 8C C0 LDA $C08C,X
BB26 10 FB BPL $BB23
BB28 C5 51 CMP $51
BB2A D0 EE BNE $BB1A
BB2C BD 8C C0 LDA $C08C,X
BB2F 10 FB BPL $BB2C
BB31 C5 52 CMP $52
BB33 D0 E5 BNE $BB1A

find a 3-nibble prologue
(varies by track, set up at
$BA39)

BB35 A4 55 LDY $55 logical sector number
(initialized to #$00 at $BB15)

BB37 B9 00 BB LDA $BB00,Y use the sector number as an
index into the $0C-length
page array we set up at $BA06)

BB3A 8D 55 BB STA $BB55
BB3D E6 55 INC $55

and modify the upcoming
code

BB3F BC 8C C0 LDY $C08C,X
BB42 10 FB BPL $BB3F
BB44 B9 00 BC LDA $BC00,Y
BB47 0A ASL
BB48 0A ASL
BB49 0A ASL
BB4A 0A ASL
BB4B BC 8C C0 LDY $C08C,X
BB4E 10 FB BPL $BB4B
BB50 19 00 BC ORA $BC00,Y

get the actual byte

BB53 8D 00 FF STA $FF00
BB56 EE 54 BB INC $BB54
BB59 D0 E4 BNE $BB3F
BB5B EE 55 BB INC $BB55

modified earlier (at $BB3A) to
be the desired page in
memory

BB5E BD 8C C0 LDA $C08C,X
BB61 10 FB BPL $BB5E
BB63 C5 53 CMP $53
BB65 D0 A5 BNE $BB0C

find a 1-nibble epilogue (also
varies by track)

BB67 C6 54 DEC $54
BB69 D0 CA BNE $BB35
BB6B 60 RTS

loop for all $0C sectors

So we’ve read $0C sectors from the current track,
which is the most you can fit on a track with this
kind of “4-and-4” nibble encoding scheme.

Continuing from $BA19. . .

BA19 A5 58 LDA $58
BA1B 18 CLC
BA1C 69 0C ADC #$0C
BA1E A8 TAY

increment the pointer to the
next memory page

BA1F B9 00 B9 LDA $B900,Y
BA22 F0 07 BEQ $BA2B

if the next page is #$00,
we’re done

BA24 68 PLA
BA25 18 CLC
BA26 69 02 ADC #$02
BA28 D0 D6 BNE $BA00

otherwise loop back, where
we’ll move the drive head one
full track forward and read
another $0C sectors

BA2B 68 PLA
BA2C 60 RTS

execution continues here
(from $BA22)
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Now we have a whole bunch of new stuff in mem-
ory. In this case, $B550 started on track 4.5 (A =
#$09 on entry to $BA00) and filled $0800..$3FFF
and $6000..$87FF. If we “print” a different char-
acter, the routine at $B500 will route through one
of the other subroutines—$B558, $B568, or $B570.
Each of them starts on a different track (A) and
uses a different starting index (Y) into the page array
at $B900. The underlying routine at $BA00 doesn’t
know anything else; it just seeks and reads $0C sec-
tors per track until the target page = #$00.

Continuing from $B50C. . .
B50C 20 00 B7 JSR $B700

*B700L
B700 A2 00 LDX #$00
B702 BD 00 B6 LDA $B600,X
B705 5D 00 BE EOR $BE00,X
B708 9D 00 03 STA $0300,X
B70B E8 INX
B70C E0 D0 CPX #$D0
B70E 90 F2 BCC $B702

B710 CE 13 B7 DEC $B713 !
B713 6D 09 B7 ADC $B709
B716 60 RTS

oh joy, another decryption
loop

And more self-modifying code.
*B713:6C
*B713L
B713 6C 09 B7 JMP ($B709)

. . .which will jump to the newly decrypted code
at $0300.

To recap: after 7 boot traces, the bootloader
prints a null character via $FD90, which jumps to
$FDED, which jumps to ($0036), which jumps to
$BF6F, which calls $BEB0, which decrypts the code
at $BF9F and returns just in time to execute it.
$BF9F reads 3 sectors into $B200-$B4FF, pushes
#$00/#$3B to the stack and exits via RTS, which
returns to $003C, which jumps to $B200. $B200
reads 8 sectors into $B500-$BCFF from tracks 2 and
2.5, shifting between the adjacent quarter tracks ev-
ery two sectors, then jumps to $B500, which calls
$B5[50|58|68|70], which reads actual game code
from multiple tracks starting at track 4.5, 9.5, 24.5,
or 32.5. Then it calls $B700, which decrypts $B600
into $0300 (using $BE00+ as the decryption key) and
exits via a jump to $0300.

I’m sure23 the code at $0300 will be straightfor-
ward and easy to understand.

In Which We Go Completely Insane
The code at $B600 is decrypted with the code at
$BE00 as the key. That was originally copied from
the text page the first time, not the second time.

*BLOAD BOOT1 0400-07FF,A$2400
*BE00<2600.26FFM ; move key
into place
*B710:60 ; stop after loop
*B700G ; decrypt
*300L
0300 A0 00 LDY #$00
0302 98 TYA
0303 99 00 B1 STA $B100,Y
0306 C8 INY
0307 D0 F9 BNE $0302
0309 EE 05 03 INC $0305
030C AE 05 03 LDX $0305

wipe almost everything we’ve
already loaded at the top of
main memory (!)

030F E0 BD CPX #$BD
0311 90 F0 BCC $0303

stop at $BD00

OK, so all we’re left with in memory is the RWTS
at $BD00..$BFFF (including the $FDED vector at
$BF6F) and the single page at $B000. Oh, and the
game, but who cares about that?

Moving on. . .
0313 A9 07 LDA #$07
0315 20 80 03 JSR $0380

*380L
0380 20 00 BE JSR $BE00 drive seek (A = #$07, so

track 3.5)

0383 A2 03 LDX #$03
0385 68 PLA
0386 CA DEX
0387 10 FC BPL $0385

Pull 4 bytes from the stack,
thus negating the JSR that
got us here (at $0315) and the
JSR before that (at $B50C).

0389 4C 18 03 JMP $0318 continue by jumping directly
to the place we would have
returned to, if we hadn’t just
popped the stack (which we
did)

What. The. Fahrvergnugen.
*318L
Oh joy. Another disk routine.
0318 AE 66 BF LDX $BF66

031B A4 5F LDY $5F Y = command ID (a.k.a. the
character we "printed" way
back when)

031D BD 8C C0 LDA $C08C,X
0320 10 FB BPL $031D
0322 C9 D4 CMP #$D4
0324 D0 F7 BNE $031D
0326 BD 8C C0 LDA $C08C,X
0329 10 FB BPL $0326
032B C9 D5 CMP #$D5
032D D0 F3 BNE $0322
032F BD 8C C0 LDA $C08C,X
0332 10 FB BPL $032F
0334 C9 D7 CMP #$D7
0336 D0 F3 BNE $032B

find a 3-nibble prologue ("D4
D5 D7")

0338 88 DEY
0339 30 08 BMI $0343

branch when Y goes negative

23not actually sure
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033B 20 51 03 JSR $0351 read one byte from disk, store
it in $5E (not shown)

033E 20 51 03 JSR $0351 read 1 more byte from disk

0341 D0 F5 BNE $0338 loop back, unless the byte is
#$00

OK, I see it. It was hard to follow at first because
the exit condition was checked before I knew it was
a loop. But this is a loop. On track 3.5, there is
a 3-nibble prologue ("D4 D5 D7"), then an array of
values. Each value is two bytes. We’re just finding
the Nth value in the array. But to what end?

0343 20 51 03 JSR $0351
0346 48 PHA
0347 20 51 03 JSR $0351
034A 48 PHA

execution continues here
(from $0339) read 2 more
bytes from disk and push
them to the stack

Ah! A new “return” address!
Oh God. A new “return” address.
That’s what this is: an array of addresses, in-

dexed by the command ID. That’s what we’re loop-
ing through, and eventually pushing to the stack:
the entry point for this block of the game.

But the entry point for each block is read directly
from disk, so I have no idea what any of them are.
Add that to the list of things I get to come back to
later.

Onward. . .

034B BD 88 C0 LDA $C088,X
034E 4C 62 03 JMP $0362

*362L

turn off the drive motor

0362 A0 00 LDY #$00
0364 99 00 03 STA $0300,Y
0367 C8 INY
0368 C0 65 CPY #$65
036A 90 F8 BCC $0364

wipe this routine from
memory

036C A9 BE LDA #$BE
036E 48 PHA
036F A9 AF LDA #$AF
0371 48 PHA
0372 A9 34 LDA #$34
0374 48 PHA
0375 CE 78 03 DEC $0378 !
0378 29 CE AND #$CE

More self-modifying code.
*378:28
*378L

push several values to the
stack

0378 28 PLP
0379 CE 7C 03 DEC $037C !
037C 61 60 ADC ($60,X)

*37C:60
*37CL
037C 60 RTS

pop that #$34 off the stack,
but use it as status registers
(weird, but legal—if it turns
out to matter, I can figure out
exactly which status bits get
set and cleared)

Now we “return” to $BEB0 because we pushed
#$BE/#$AF/#$34 but then popped #$34. The rou-

tine at $BEB0 re-encrypts the code at $BF9F (because
now we’ve XOR’d it twice so it’s back to its origi-
nal form) and exits via RTS, which “returns” to the
address we pushed to the stack at $0346, which we
read from track 3.5—and varies based on the com-
mand we’re still executing, which is really the char-
acter we “printed” via the output vector.

Which is all completely insane.

In Which We Are Restored To Sanity
LOL, Just Kidding
But Soon, Maybe

Since the “JSR $B700” at $B50C never returns (be-
cause of the crazy stack manipulation at $0383),
that’s the last chance I’ll get to interrupt the boot
and capture this chunk of game code in memory.
I won’t know what the entry point is (because it’s
read from disk), but one thing at a time.

*BLOAD TRACE8
.
. [same as previous trace]
.

978D A9 4C LDA #$4C
978F 8D 0C B5 STA $B50C
9792 A9 59 LDA #$59
9794 8D 0D B5 STA $B50D
9797 A9 FF LDA #$FF
9799 8D 0E B5 STA $B50E

unconditionally break after
loading the game code into
main memory

979C 4C 00 B5 JMP $B500

*BSAVE TRACE9,A$9600,L$19F
*9600G
. . .reboots slot 6. . .
. . .read read read. . .
<beep>
Success!
*C050 C054 C057 C052
[displays a very nice picture
of a
gumball machine which is

featured in
the game’s introduction

sequence]
*C051

continue the boot

OK, let’s save it. According to the table at
$B900, we filled $0800..$3FFF and $6000..$87FF.
$0800+ is overwritten on reboot by the boot sec-
tor and later by the HELLO program on my work
disk. $8000+ is also overwritten by Diversi-DOS
64K, which is annoying but not insurmountable. So
I’ll save this in pieces.
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*C500G
. . .
]BSAVE BLOCK
00.2000-3FFF,A$2000,L$2000
]BRUN TRACE9
. . .reboots slot 6. . .
<beep>
*2800<800.1FFFM
*C500G
. . .
]BSAVE BLOCK
00.0800-1FFF,A$2800,L$1800
]BRUN TRACE9
. . .reboots slot 6. . .
<beep>
*2000<6000.87FFM
*C500G
. . .
]BSAVE BLOCK
00.6000-87FF,A$2000,L$2800

Now what? Well this is only the first chunk of
game code, loaded by printing a null character. By
setting up another trace and changing the value of
zero page $5F, I can route $B500 through a different
subroutine at $B558 or $B568 or $B570 and load a
different chunk of game code.

]CALL -151
*BLOAD OBJ.B500-BCFF,A$B500
According to the lookup table
at $B580,
$B500 routed through $B558 to
load the
game code. Here is that
routine:
*B558L
B558 A9 19 LDA #$19
B55A A0 00 LDY #$00
B55C 20 00 BA JSR $BA00
B55F A9 29 LDA #$29
B561 A0 68 LDY #$68
B563 4C 00 BA JMP $BA00

The first call to $BA00 will fill up the same parts
of memory as we filled when the character (in $5F)
was #$00—$0800..$3FFF and $6000..$87FF. But
it starts reading from disk at phase $19 (track $0C
1/2), so it’s a completely different chunk of code.

The second call to $BA00 starts reading at phase
$29 (track $14 1/2), and it looks at $B900 + Y =
$B968 to get the list of pages to fill in memory.

*B968.
B968 88 89 8A 8B 8C 8D 8E 8F
B970 90 91 92 93 94 95 96 97
B978 98 99 9A 9B 9C 9D 9E 9F
B980 A0 A1 A2 A3 A4 A5 A6 A7
B988 A8 A9 AA AB AC AD AE AF
B990 B2 B2 B2 B2 B2 B2 B2 B2
B998 00 00 00 00 00 00 00 00

The first call to $BA00 stopped just shy of $8800,
and that’s exactly where we pick up in the second
call. I’m guessing that $B200 isn’t really used, but
the track read routine at $BA00 is “dumb” in that
it always reads exactly $0C sectors from each track.
So we’re filling up $8800..$AFFF, then reading the

rest of the last track into $B200 over and over.

Let’s capture it.

*BLOAD TRACE9
.
. [same as previous trace]
.

978D A9 4C LDA #$4C
978F 8D 0C B5 STA $B50C
9792 A9 59 LDA #$59
9794 8D 0D B5 STA $B50D
9797 A9 FF LDA #$FF
9799 8D 0E B5 STA $B50E

again, break to the monitor at
$B50C instead of continuing to
$B700

979C A9 01 LDA #$01
979E 85 5F STA $5F

change the character being
"printed" to #$01 just before
the bootloader uses it to load
the appropriate chunk of
game code

97A0 4C 00 B5 JMP $B500

*BSAVE TRACE10,A$9600,L$1A3
*9600G
. . .reboots slot 6. . .
. . .read read read. . .
<beep>
*C050 C054 C057 C052
[displays a very nice picture
of the
main game screen]

*C051
*C500G
. . .
]BSAVE BLOCK
01.2000-3FFF,A$2000,L$2000
]BRUN TRACE10
. . .reboots slot 6. . .
<beep>
*2800<800.1FFFM
*C500G
. . .
]BSAVE BLOCK
01.0800-1FFF,A$2800,L$1800
]BRUN TRACE9
. . .reboots slot 6. . .
<beep>
*2000<6000.AFFFM
*C500G
. . .
]BSAVE BLOCK
01.6000-AFFF,A$2000,L$5000

continue the boot

And similarly with blocks 2 and 3. (These are
not shown here, but you can look at TRACE11 and
TRACE12 on my work disk.) Blocks 4 and 5 get
special-cased earlier (at $BF86 and $BF8D, respec-
tively), so they never reach $B500 to load anything
from disk. Block 6 is the same as block 1.

That’s it. I’ve captured all the game code.
Here’s what the “game” looks like at this point:
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]CATALOG
C1983 DSR^C#254
019 FREE
A 002 HELLO
B 003 BOOT0

*B 003 TRACE
B 003 BOOT1 0300-03FF

*B 003 TRACE2
B 003 BOOT1 0100-01FF

*B 003 TRACE3
B 006 BOOT1 0400-07FF

*B 003 TRACE4
B 005 BOOT2 0500-07FF

*B 003 TRACE5
B 003 BOOT2 B000-B0FF
B 003 BOOT2 0100-01FF

*B 003 TRACE6
B 003 BOOT3 0000-00FF

*B 003 TRACE7
B 005 OBJ.B200-B4FF

*B 003 TRACE8
B 010 OBJ.B500-BCFF

*B 003 TRACE9
B 026 BLOCK 00.0800-1FFF
B 034 BLOCK 00.2000-3FFF
B 042 BLOCK 00.6000-87FF

*B 003 TRACE10
B 026 BLOCK 01.0800-1FFF
B 034 BLOCK 01.2000-3FFF
B 082 BLOCK 01.6000-AFFF

*B 003 TRACE11
B 026 BLOCK 02.0800-1FFF
B 034 BLOCK 02.2000-3FFF
B 042 BLOCK 02.6000-87FF

*B 003 TRACE12
B 034 BLOCK 03.2000-3FFF

It’s. . . it’s beautiful. wipes tear

In Which Every Exit Is An Entrance
Somewhere Else
I’ve captured all the blocks of the game code (I
think), but I still have no idea how to run it. The
entry points for each block are read directly from
disk, in the loop at $031D.

  COPY ][ PLUS BIT COPY PROGRAM 8.4

(C) 1982-9 CENTRAL POINT SOFTWARE, INC.

---------------------------------------

TRACK: 03.50  START: 1800  LENGTH: 3DFF

      ^^^^^

1DA0: FA AA FA AA FA AA FA AA  VIEW

1DA8: EB FA FF AE EA EB FF AE

1DB0: EB EA FC FF FF FF FF FF

1DB8: FF FF FF FF FF FF FF FF

1DC0: FF FF FF D4 D5 D7 AF AF <-1DC3

             ^^^^^^^^

1DC8: EE BE BA BB FE FA AA BA

1DD0: BA BE FF FF AB FF FF FF

1DD8: AB FF FF FF AB FF BB AB FIND:

1DE0: BB FF AA AA AA AA AA AA D4 D5 D7

---------------------------------------

 A  TO ANALYZE DATA  ESC TO QUIT

 ?  FOR HELP SCREEN  /  CHANGE PARMS

 Q  FOR NEXT TRACK  SPACE TO RE-READ

Rather than try to boot-trace every possible
block, I’m going to load up the original disk in a
nibble editor and do the calculations myself. The
array of entry points is on track 3.5. Firing up
Copy II Plus nibble editor, I searched for the same
3-nibble prologue (“D4 D5 D7”) that the code at
$031D searches for, and lo and behold!

After the “D4 D5 D7” prologue, I find an array
of 4-and-4-encoded nibbles starting at offset $1DC6.
Breaking them down into pairs and decoding them
with the 4-4 encoding scheme, I get this list of bytes:

nibbles byte
AF AF #$0F
EE BE #$9C
BA BB #$31
FE FA #$F8
AA BA #$10
BA BE #$34
FF FF #$FF
AB FF #$57
FF FF #$FF
AB FF #$57
FF FF #$FF
AB FF #$57
BB AB #$23
BB FF #$77

And now—maybe!—I have my list of entry points
for each block of the game code.

Only one way to know for
sure. . .
]PR#5
. . .
]CALL -151
*800:0 N 801<800.BEFEM clear main memory so I’m not

accidentally relying on
random stuff left over from all
my other testing

*BLOAD BLOCK
00.0800-1FFF,A$800
*BLOAD BLOCK
00.2000-3FFF,A$2000
*BLOAD BLOCK
00.6000-87FF,A$6000

load all of block 0 into place

*F9DG
[displays the game intro
sequence]
*does a little happy dance in
my chair*

jump to the entry point I
found on track 3.5 (+1, since
the original code pushes it to
the stack and "returns" to it)

We have no further use for the original disk. Now
would be an excellent time to take it out of the drive
and store it in a cool, dry place.
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InWhich TwoWrongs Don’t Make A—
Oh God I Can’t Even—With This Pun

Remember when I said I’d look at $BD00 later? The
time has come. Later is now.

The output vector at $BF6F has special case han-
dling if A = #$04. Instead of continuing to $0300
and $B500, it jumps directly to $BD00. What’s so
special about $BD00?

The code at $BD00 was moved there very early
in the boot process, from page $0500 on the text
screen. (The first time we loaded code into the text
screen, not the second time.) So it’s in “BOOT1
0400-07FF” on my work disk.

]PR#5
. . .
]BLOAD BOOT1 0400-07FF,A$2400
]CALL -151
*BD00<2500.25FFM
*BD00L
BD00 AE 66 BF LDX $BF66
BD03 BD 89 C0 LDA $C089,X

turn on drive motor

BD06 A9 64 LDA #$64
BD08 20 A8 FC JSR $FCA8

wait for drive to settle

BD0B A9 10 LDA #$10
BD0D 20 00 BE JSR $BE00

seek to phase $10 (track 8)

BD10 A9 02 LDA #$02
BD12 20 00 BE JSR $BE00

seek to phase $02 (track 1)

BD15 A0 FF LDY #$FF
BD17 BD 8D C0 LDA $C08D,X
BD1A BD 8E C0 LDA $C08E,X
BD1D 9D 8F C0 STA $C08F,X
BD20 1D 8C C0 ORA $C08C,X

initialize data latches

BD23 A9 80 LDA #$80
BD25 20 A8 FC JSR $FCA8
BD28 20 A8 FC JSR $FCA8

wait

BD2B BD 8D C0 LDA $C08D,X
BD2E BD 8E C0 LDA $C08E,X
BD31 98 TYA
BD32 9D 8F C0 STA $C08F,X
BD35 1D 8C C0 ORA $C08C,X
BD38 48 PHA
BD39 68 PLA
BD3A C1 00 CMP ($00,X)
BD3C C1 00 CMP ($00,X)
BD3E EA NOP
BD3F C8 INY

Oh God

BD40 9D 8D C0 STA $C08D,X
BD43 1D 8C C0 ORA $C08C,X
BD46 B9 8F BD LDA $BD8F,Y
BD49 D0 EF BNE $BD3A
BD4B A8 TAY
BD4C EA NOP
BD4D EA NOP

Oh God

BD4E B9 00 B0 LDA $B000,Y
BD51 48 PHA
BD52 4A LSR
BD53 09 AA ORA #$AA

← !

BD55 9D 8D C0 STA $C08D,X
BD58 DD 8C C0 CMP $C08C,X
BD5B C1 00 CMP ($00,X)
BD5D EA NOP
BD5E EA NOP
BD5F 48 PHA
BD60 68 PLA
BD61 68 PLA
BD62 09 AA ORA #$AA
BD64 9D 8D C0 STA $C08D,X
BD67 DD 8C C0 CMP $C08C,X
BD6A 48 PHA
BD6B 68 PLA
BD6C C8 INY
BD6D D0 DF BNE $BD4E
BD6F A9 D5 LDA #$D5
BD71 C1 00 CMP ($00,X)
BD73 EA NOP
BD74 EA NOP
BD75 9D 8D C0 STA $C08D,X
BD78 1D 8C C0 ORA $C08C,X
BD7B A9 08 LDA #$08
BD7D 20 A8 FC JSR $FCA8
BD80 BD 8E C0 LDA $C08E,X
BD83 BD 8C C0 LDA $C08C,X

Oh God Oh God Oh God

BD86 A9 07 LDA #$07
BD88 20 00 BE JSR $BE00

seek back to track 3.5

BD8B BD 88 C0 LDA $C088,X
BD8E 60 RTS

turn off drive motor and exit
gracefully

This is a disk write routine. It’s taking the data
at $B000 (that mystery sector that was loaded even
earlier in the boot) and writing it to track 1.

Because high scores.
That’s what’s at $B000. High scores. [Edit from

the future: also some persistent joystick options.]
Why is this so distressing? Because it means

I’ll get to include a full read/write RWTS on my
crack (which I haven’t even starting building yet,
but soon!) so it can save high scores like the original
game. Because anything less is obviously unaccept-
able.

The Right Ones In The Right Order

Let’s step back from the low-level code for a mo-
ment and talk about how this game interacts with
the disk at a high level.

• There is no runtime protection check. All the
“protection” is structural—data is stored on
whole tracks, half tracks, and even some con-
secutive quarter tracks. Once the game code
is in memory, there are no nibble checks or
secondary protections.

• The game code itself contains no disk code.
They’re completely isolated. I proved this by
loading the game code from my work disk and
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jumping to the entry point. (I tested the ani-
mated introduction, but you can also run the
game itself by loading the block $01 files into
memory and jumping to $31F9. The game
runs until you finish the level and it tries to
load the first cut scene from disk.)

• The game code communicates with the disk
subsystem through the output vector, i.e.
by printing #$00..#$06 to $FDED. The disk
code handles filling the screen with a pseudo-
random color, reading the right chunks from
the right places on disk and putting them into
the right places in memory, then jumping to
the right address to continue. (In the case of
printing #$04, it handles writing the right data
in memory to the right place on disk.)

• Game code lives at $0800..$AFFF, zero page,
and one page at $B000 for high scores. The
disk subsystem clobbers the text screen at
$0400 using lo-res graphics for the color fills.
All memory above $B100 is available; in fact,
most of it is wiped (at $0300) after every disk
command.

This is great news. It gives us total flexibility to
recreate the game from its constituent pieces.

A Man, A Plan, A Canal, &c.

Here’s the plan:

1. Write the game code to a standard 16-sector
disk

2. Write a bootloader and RWTS that can read
the game code into memory

3. Write some glue code to mimic the origi-
nal output vector at $BF6F (A = command
ID from #$00-#$06, all other values actually
print) so I don’t need to change any game code

4. Declare victory24

Looking at the length of each block and dividing
by 16, I can space everything out on separate tracks
and still have plenty of room. This means each block
can start on its own track, which saves a few bytes
by being able to hard-code the starting sector for
each block.

The disk map will look like this:

tr memory range notes
00 $BD00..$BFFF Gumboot
01 $B000..$B3FF scores/zpage/glue
02 $0800..$17FF block 0
03 $1800..$27FF block 0
04 $2800..$37FF block 0
05 $3800..$3FFF block 0
06 $6000..$67FF block 0
07 $6800..$77FF block 0
08 $7000..$87FF block 0
09 $0800..$17FF block 1
0A $1800..$27FF block 1
0B $2800..$37FF block 1
0C $3800..$3FFF block 1
0D $6000..$6FFF block 1
0E $7000..$7FFF block 1
0F $8000..$8FFF block 1
10 $9000..$9FFF block 1
11 $A000..$AFFF block 1
12 $0800..$17FF block 2
13 $1800..$27FF block 2
14 $2800..$37FF block 2
15 $3800..$3FFF block 2
16 $6000..$6FFF block 2
17 $7000..$7FFF block 2
18 $8000..$87FF block 2
19 $2000..$2FFF block 3
1A $3000..$3FFF block 3

I wrote a build script to take all the chunks of
game code I captured way back on page 43. And by
“script”, I mean “BASIC program.”

]PR#5
. . .
10 REM MAKE GUMBALL
11 REM S6,D1=BLANK DISK
12 REM S5,D1=WORK DISK
20 D$ = CHR$ (4)

30 PRINT D$"BLOAD BLOCK
00.0800-1FFF,
A$1000"
40 PRINT D$"BLOAD BLOCK

00.2000-3FFF,
A$2800"

Load the first part of block 0:

50 PAGE = 16:COUNT = 56:TRK =
2:
SEC = 0: GOSUB 1000

Write it to tracks $02-$05:

60 PRINT D$"BLOAD BLOCK
00.6000-87FF,
A$6000"

Load the second part of
block 0:

70 PAGE = 96:COUNT = 40:TRK =
6:
SEC = 0: GOSUB 1000

Write it to tracks $06-$08:

24take a nap
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80 PRINT D$"BLOAD BLOCK
01.0800-1FFF,
A$1000"
90 PRINT D$"BLOAD BLOCK

01.2000-3FFF,
A$2800"
100 PAGE = 16:COUNT = 56:TRK

= 9:
SEC = 0: GOSUB 1000
110 PRINT D$"BLOAD BLOCK

01.6000-AFFF,
A$6000"
120 PAGE = 96:COUNT = 80:TRK

= 13:
SEC = 0: GOSUB 1000
130 PRINT D$"BLOAD BLOCK

02.0800-1FFF,
A$1000"
140 PRINT D$"BLOAD BLOCK

02.2000-3FFF,
A$2800"
150 PAGE = 16:COUNT = 56:TRK

= 18:
SEC = 0: GOSUB 1000
160 PRINT D$"BLOAD BLOCK

02.6000-87FF,
A$6000"
170 PAGE = 96:COUNT = 40:TRK

= 22:
SEC = 0: GOSUB 1000
180 PRINT D$"BLOAD BLOCK

03.2000-3FFF,
A$2000"
190 PAGE = 32:COUNT = 32:TRK

= 25:
SEC = 0: GOSUB 1000
200 PRINT D$"BLOAD BOOT2

0500-07FF,
A$2500"
210 PAGE = 39:COUNT = 1:TRK =

1:
SEC = 0: GOSUB 1000
220 PRINT D$"BLOAD BOOT3

0000-00FF,
A$1000"
230 POKE 4150,0: POKE

4151,178: REM
SET ($36) TO $B200
240 PAGE = 16:COUNT = 1:TRK =

1:
SEC = 7: GOSUB 1000
999 END
1000 REM WRITE TO DISK
1010 PRINT D$"BLOAD WRITE"
1020 POKE 908,TRK
1030 POKE 909,SEC
1040 POKE 913,PAGE
1050 POKE 769,COUNT
1060 CALL 768
1070 RETURN

]SAVE MAKE

And so on, for all the other
blocks:

The BASIC program relies on a short assembly
language routine to do the actual writing to disk.
Here is that routine (loaded on line 1010):

]CALL -151

0300 A9 D1 LDA #$D1 o O

0302 85 FF STA $FF
page count (set from BASIC)

0304 A9 00 LDA #$00
0306 85 FE STA $FE

logical sector (incremented)

0308 A9 03 LDA #$03
030A A0 88 LDY #$88
030C 20 D9 03 JSR $03D9

call RWTS to write sector

030F E6 FE INC $FE
0311 A4 FE LDY $FE
0313 C0 10 CPY #$10
0315 D0 07 BNE $031E
0317 A0 00 LDY #$00
0319 84 FE STY $FE
031B EE 8C 03 INC $038C

increment logical sector, wrap
around from $0F to $00 and
increment track

031E B9 40 03 LDA $0340,Y
0321 8D 8D 03 STA $038D

convert logical to physical
sector

0324 EE 91 03 INC $0391 increment page to write

0327 C6 FF DEC $FF
0329 D0 DD BNE $0308
032B 60 RTS

*340.34F

loop until done with all
sectors

0340 00 07 0E 06 0D 05 0C 04
0348 0B 03 0A 02 09 01 08 0F
*388.397

logical to physical sector
mapping

0388 01 60 01 00 D1 D1 FB F7

track/sector
(set from BASIC)

0390 00 D1 00 00 02 00 00 60

address
(set from BASIC) RWTS parameter table,

pre-initialized with slot
(#$06), drive (#$01), and
RWTS write command (#$02)

*BSAVE WRITE,A$300,L$98
[S6,D1=blank disk]
]RUN MAKE

. . .write write write. . .
Boom! The entire game is on tracks $02-$1A of

a standard 16-sector disk.
Now we get to write an RWTS.

Introducing Gumboot

Gumboot is a fast bootloader and full read/write
RWTS. It fits in 4 sectors on track 0, including a
boot sector. It uses only 6 pages of memory for all
its code + data + scratch space. It uses no zero page
addresses after boot. It can start the game from a
cold boot in 3 seconds. That’s twice as fast as the
original disk.
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qkumba wrote it from scratch, because of course
he did. I, um, mostly just cheered.

After boot-time initialization, Gumboot is dead
simple and always ready to use:

entry command parameters
$BD00 read A = first track

Y = first page
X = sector count

$BE00 write A = sector
Y = page

$BF00 seek A = track

That’s it. It’s so small, there’s $80 unused bytes
at $BF80. You could fit a cute message in there!
(We didn’t.)

Some important notes:

• The read routine reads consecutive tracks in
physical sector order into consecutive pages in
memory. There is no translation from physical
to logical sectors.

• The write routine writes one sector, and also
assumes a physical sector number.

• The seek routine can seek forward or back to
any whole track. (I mention this because some
fastloaders can only seek forward.)

I said Gumboot takes 6 pages in memory, but I’ve
only mentioned 3. The other 3 are for data:

$BA00..$BB55 scratch space for write (technically
available as long as you don’t mind them being
clobbered during disk write)

$BB00..$BCFF data tables (initialized once during
boot)

Gumboot Boot0
Gumboot starts, as all disks start, on track $00.
Sector $00 (boot0) reuses the disk controller ROM
routine to read sector $0E, $0D, and $0C (boot1).
Boot0 creates a few data tables, modifies the boot1
code to accommodate booting from any slot, and
jumps to it.

Boot0 is loaded at $0800 by the disk controller
ROM routine.

0800 [01]
tell the ROM to load only
this sector (we’ll do the rest
manually)

0801 4A LSR The accumulator is #$01 after
loading sector $00, #$03 after
loading sector $0E, #$05 after
loading sector $0D, and #$07
after loading sector $0C. We
shift it right to divide by 2,
then use that to calculate the
load address of the next
sector.

0802 69 BC ADC #$BC Sector $0E → $BD00
Sector $0D → $BE00
Sector $0C → $BF00

0804 85 27 STA $27 store the load address

0806 0A ASL
0807 0A ASL

shift the accumulator again
(now that we’ve stored the
load address)

0808 8A TXA transfer X (boot slot x16) to
the accumulator, which will
be useful later but doesn’t
affect the carry flag we may
have just tripped with the
two “ASL” instructions

0809 B0 0D BCS $0818 if the two “ASL” instructions
set the carry flag, it means
the load address was at least
#$C0, which means we’ve
loaded all the sectors we
wanted to load and we should
exit this loop

080B E6 3D INC $3D Set up next sector number to
read. The disk controller
ROM does this once already,
but due to quirks of timing,
it’s much faster to increment
it twice so the next sector you
want to load is actually the
next sector under the drive
head. Otherwise you end up
waiting for the disk to spin an
entire revolution, which is
quite slow.

080D 4A LSR
080E 4A LSR
080F 4A LSR
0810 4A LSR
0811 09 C0 ORA #$C0

Set up the “return” address to
jump to the “read sector”
entry point of the disk
controller ROM. This could
be anywhere in $Cx00
depending on the slot we
booted from, which is why we
put the boot slot in the
accumulator at $0808.
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0813 48 PHA
0814 A9 5B LDA #$5B
0816 48 PHA

push the entry point on the
stack

0817 60 RTS “Return” to the entry point
via RTS. The disk controller
ROM always jumps to $0801
(remember, that’s why we
had to move it and patch it to
trace the boot all the way
back on page 25), so this
entire thing is a loop that
only exits via the “BCS”
branch at $0809.

0818 09 8C ORA #$8C
081A A2 00 LDX #$00
081C BC AF 08 LDY $08AF,X
081F 84 26 STY $26
0821 BC B0 08 LDY $08B0,X
0824 F0 0A BEQ $0830
0826 84 27 STY $27
0828 A0 00 LDY #$00
082A 91 26 STA ($26),Y
082C E8 INX
082D E8 INX
082E D0 EC BNE $081C

Execution continues here
(from $0809) after three
sectors have been loaded into
memory at $BD00..$BFFF.
There are a number of places
in boot1 that hit a
slot-specific soft switch (read
a nibble from disk, turn off
the drive, &c.). Rather than
the usual form of “LDA
$C08C,X”, we will use “LDA
$C0EC” and modify the $EC
byte in advance, based on the
boot slot. $08A4 is an array of
all the places in the Gumboot
code that get this adjustment.

0830 29 F8 AND #$F8
0832 8D FC BD STA $BDFC

munge $EC → $E8 (used later
to turn off the drive motor)

0835 09 01 ORA #$01
0837 8D 0B BD STA $BD0B
083A 8D 07 BE STA $BE07

munge $E8 → $E9 (used later
to turn on the drive motor)

083D 49 09 EOR #$09
083F 8D 54 BF STA $BF54

munge $E9 → $E0 (used later
to move the drive head via
the stepper motor)

0842 29 70 AND #$70
0844 8D 37 BE STA $BE37
0847 8D 69 BE STA $BE69
084A 8D 7F BE STA $BE7F
084D 8D AC BE STA $BEAC

munge $E0 → $60 (boot slot
x16, used during seek and
write routines)

6 + 2
Before I dive into the next chunk of code, I get to
pause and explain a little bit of theory. As you prob-
ably know if you’re the sort of person who’s read this
far already, Apple II floppy disks do not contain the
actual data that ends up being loaded into memory.
Due to hardware limitations of the original Disk II
drive, data on disk is stored in an intermediate for-
mat called “nibbles.” Bytes in memory are encoded
into nibbles before writing to disk, and nibbles that
you read from the disk must be decoded back into
bytes. The round trip is lossless but requires some
bit wrangling.

Decoding nibbles-on-disk into bytes-in-memory
is a multi-step process. In “6-and-2 encoding” (used
by DOS 3.3, ProDOS, and all “.dsk” image files),
there are 64 possible values that you may find in
the data field. (In the range $96..$FF, but not all
of those, because some of them have bit patterns
that trip up the drive firmware.) We’ll call these
“raw nibbles.”

Step 1) read $156 raw nibbles from the data field.
These values will range from $96 to $FF, but as
mentioned earlier, not all values in that range
will appear on disk.

Now we have $156 raw nibbles.

Step 2) decode each of the raw nibbles into a 6-
bit byte between 0 and 63. (%00000000 and
%00111111 in binary.) $96 is the lowest valid
raw nibble, so it gets decoded to 0. $97 is the
next valid raw nibble, so it’s decoded to 1. $98
and $99 are invalid, so we skip them, and $9A
gets decoded to 2. And so on, up to $FF (the
highest valid raw nibble), which gets decoded
to 63.

Now we have $156 6-bit bytes.

Step 3) split up each of the first $56 6-bit bytes into
pairs of bits. In other words, each 6-bit byte
becomes three 2-bit bytes. These 2-bit bytes
are merged with the next $100 6-bit bytes to
create $100 8-bit bytes. Hence the name, “6-
and-2” encoding.

The exact process of how the bits are split and
merged is. . . complicated. The first $56 6-bit bytes
get split up into 2-bit bytes, but those two bits get
swapped such that %01 becomes %10 and vice-versa.
The other $100 6-bit bytes each get multiplied by
4 (a.k.a. bit-shifted two places left). This leaves a
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hole in the lower two bits, which is filled by one of
the 2-bit bytes from the first group.

A diagram might help. “a” through “x” each rep-
resent one bit.

1 decoded    3 decoded

nibble in +  nibbles in = 3 bytes

first $56    other $100

00abcdef     00ghijkl

            00mnopqr

            00stuvwx

   

split            

  &         shifted

swapped      left x2

                 

                 

000000fe  +  ghijkl00  =  ghijklfe

000000dc  +  mnopqr00  =  mnoprqdc

000000ba  +  stuvwx00  =  stuvwxba

Tada! Four 6-bit bytes

00abcdef
00ghijkl
00mnopqr
00stuvwx

become three 8-bit bytes

ghijklfe
mnoprqdc
stuvwxba

When DOS 3.3 reads a sector, it reads the first
$56 raw nibbles, decoded them into 6-bit bytes, and
stashes them in a temporary buffer at $BC00. Then
it reads the other $100 raw nibbles, decodes them
into 6-bit bytes, and puts them in another tempo-
rary buffer at $BB00. Only then does DOS 3.3 start
combining the bits from each group to create the
full 8-bit bytes that will end up in the target page
in memory. This is why DOS 3.3 “misses” sectors
when it’s reading, because it’s busy twiddling bits
while the disk is still spinning.

Gumboot also uses “6-and-2” encoding. The first
$56 nibbles in the data field are still split into pairs
of bits that will be merged with nibbles that won’t
come until later. But instead of waiting for all $156
raw nibbles to be read from disk, it “interleaves”
the nibble reads with the bit twiddling required to
merge the first $56 6-bit bytes and the $100 that

follow. By the time Gumboot gets to the data field
checksum, it has already stored all $100 8-bit bytes
in their final resting place in memory. This means
that we can read all 16 sectors on a track in one
revolution of the disk. That’s what makes it crazy
fast.

To make it possible to twiddle the bits and not
miss nibbles as the disk spins25, we do some of the
work in advance. We multiply each of the 64 pos-
sible decoded values by 4 and store those values.
(Since this is done by bit shifting and we’re doing
it before we start reading the disk, this is called the
“pre-shift” table.) We also store all possible 2-bit
values in a repeating pattern that will make it easy
to look them up later. Then, as we’re reading from
disk (and timing is tight), we can simulate bit math
with a series of table lookups. There is just enough
time to convert each raw nibble into its final 8-bit
byte before reading the next nibble.

The first table, at $BC00..$BCFF, is three
columns wide and 64 rows deep. Astute readers will
notice that 3 x 64 is not 256. Only three of the
columns are used; the fourth (unused) column exists
because multiplying by 3 is hard but multiplying by
4 is easy in base 2. The three columns correspond
to the three pairs of 2-bit values in those first $56
6-bit bytes. Since the values are only 2 bits wide,
each column holds one of four different values. (%00,
%01, %10, or %11.)

The second table, at $BB96..$BBFF, is the “pre-
shift” table. This contains all the possible 6-bit
bytes, in order, each multiplied by 4. (They are
shifted to the left two places, so the 6 bits that
started in columns 0-5 are now in columns 2-7, and
columns 0 and 1 are zeroes.) Like this:

00ghijkl –> ghijkl00

Astute readers will notice that there are only 64
possible 6-bit bytes, but this second table is larger
than 64 bytes. To make lookups easier, the table
has empty slots for each of the invalid raw nibbles.
In other words, we don’t do any math to decode raw
nibbles into 6-bit bytes; we just look them up in this
table (offset by $96, since that’s the lowest valid raw
nibble) and get the required bit shifting for free.

25The disk spins independently of the CPU, and we only have a limited time to read a nibble and do what we’re going to do
with it before WHOOPS HERE COMES ANOTHER ONE. So time is of the essence. Also, “As The Disk Spins” would make
a great name for a retrocomputing-themed soap opera.
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addr raw decoded 6-bit pre-shift
$BB96 $96 0 = %00000000 %00000000
$BB97 $97 1 = %00000001 %00000100
$BB98 $98 [invalid raw nibble]
$BB99 $99 [invalid raw nibble]
$BB9A $9A 2 = %00000010 %00001000
$BB9B $9B 3 = %00000011 %00001100
$BB9C $9C [invalid raw nibble]
$BB9D $9D 4 = %00000100 %00010000

.

.

.
$BBFE $FE 62 = %00111110 %11111000
$BBFF $FF 63 = %00111111 %11111100

Each value in this “pre-shift” table also serves as
an index into the first table with all the 2-bit bytes.
This wasn’t an accident; I mean, that sort of magic
doesn’t just happen. But the table of 2-bit bytes is
arranged in such a way that we can take one of the
raw nibbles to be decoded and split apart (from the
first $56 raw nibbles in the data field), use each raw
nibble as an index into the pre-shift table, then use
that pre-shifted value as an index into the first table
to get the 2-bit value we need.

Back to Gumboot
This is the loop that creates the pre-shift table at
$BB96. As a special bonus, it also creates the inverse
table that is used during disk write operations, con-
verting in the other direction.

0850 A2 3F LDX #$3F
0852 86 FF STX $FF
0854 E8 INX
0855 A0 7F LDY #$7F
0857 84 FE STY $FE
0859 98 TYA
085A 0A ASL
085B 24 FE BIT $FE
085D F0 18 BEQ $0877
085F 05 FE ORA $FE
0861 49 FF EOR #$FF
0863 29 7E AND #$7E
0865 B0 10 BCS $0877
0867 4A LSR
0868 D0 FB BNE $0865
086A CA DEX
086B 8A TXA
086C 0A ASL
086D 0A ASL
086E 99 80 BB STA $BB80,Y
0871 98 TYA
0872 09 80 ORA #$80
0874 9D 56 BB STA $BB56,X
0877 88 DEY
0878 D0 DD BNE $0857

And this is the result, where “..” means that
the address is uninitialized and unused.

BB90 00 04
BB98 .. .. 08 0C .. 10 14 18
BBA0 .. .. .. .. .. .. 1C 20
BBA8 .. .. .. 24 28 2C 30 34
BBB0 .. .. 38 3C 40 44 48 4C
BBB8 .. 50 54 58 5C 60 64 68
BBC0 .. .. .. .. .. .. .. ..
BBC8 .. .. .. 6C .. 70 74 78
BBD0 .. .. .. 7C .. .. 80 84
BBD8 .. 88 8C 90 94 98 9C A0
BBE0 .. .. .. .. .. A4 A8 AC
BBE8 .. B0 B4 B8 BC C0 C4 C8
BBF0 .. .. CC D0 D4 D8 DC E0
BBF8 .. E4 E8 EC F0 F4 F8 FC

Next up: a loop to create the table of 2-bit values
at $BC00, magically arranged to enable easy lookups
later.

087A 84 FD STY $FD
087C 46 FF LSR $FF
087E 46 FF LSR $FF
0880 BD BD 08 LDA $08BD,X
0883 99 00 BC STA $BC00,Y
0886 E6 FD INC $FD
0888 A5 FD LDA $FD
088A 25 FF AND $FF
088C D0 05 BNE $0893
088E E8 INX
088F 8A TXA
0890 29 03 AND #$03
0892 AA TAX
0893 C8 INY
0894 C8 INY
0895 C8 INY
0896 C8 INY
0897 C0 03 CPY #$03
0899 B0 E5 BCS $0880
089B C8 INY
089C C0 03 CPY #$03
089E 90 DC BCC $087C
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And this is the result:
BC00 00 00 00 .. 00 00 02 ..
BC08 00 00 01 .. 00 00 03 ..
BC10 00 02 00 .. 00 02 02 ..
BC18 00 02 01 .. 00 02 03 ..
BC20 00 01 00 .. 00 01 02 ..
BC28 00 01 01 .. 00 01 03 ..
BC30 00 03 00 .. 00 03 02 ..
BC38 00 03 01 .. 00 03 03 ..
BC40 02 00 00 .. 02 00 02 ..
BC48 02 00 01 .. 02 00 03 ..
BC50 02 02 00 .. 02 02 02 ..
BC58 02 02 01 .. 02 02 03 ..
BC60 02 01 00 .. 02 01 02 ..
BC68 02 01 01 .. 02 01 03 ..
BC70 02 03 00 .. 02 03 02 ..
BC78 02 03 01 .. 02 03 03 ..
BC80 01 00 00 .. 01 00 02 ..
BC88 01 00 01 .. 01 00 03 ..
BC90 01 02 00 .. 01 02 02 ..
BC98 01 02 01 .. 01 02 03 ..
BCA0 01 01 00 .. 01 01 02 ..
BCA8 01 01 01 .. 01 01 03 ..
BCB0 01 03 00 .. 01 03 02 ..
BCB8 01 03 01 .. 01 03 03 ..
BCC0 03 00 00 .. 03 00 02 ..
BCC8 03 00 01 .. 03 00 03 ..
BCD0 03 02 00 .. 03 02 02 ..
BCD8 03 02 01 .. 03 02 03 ..
BCE0 03 01 00 .. 03 01 02 ..
BCE8 03 01 01 .. 03 01 03 ..
BCF0 03 03 00 .. 03 03 02 ..
BCF8 03 03 01 .. 03 03 03 ..

And with that, Gumboot is fully armed and op-
erational.

08A0 A9 B2 LDA #$B2
08A2 48 PHA
08A3 A9 F0 LDA #$F0
08A5 48 PHA

Push a "return" address on
the stack. We’ll come back to
this later. (Ha ha, get it,
come back to it? OK, let’s
pretend that never happened.)

08A6 A9 01 LDA #$01
08A8 A2 03 LDX #$03
08AA A0 B0 LDY #$B0

Set up an initial read of 3
sectors from track 1 into
$B000..$B2FF. This contains
the high scores data, zero
page, and a new output vector
that interfaces with Gumboot.

08AC 4C 00 BD JMP $BD00 Read all that from disk and
exit via the “return” address
we just pushed on the stack
at $0895.

Execution will continue at $B2F1, once we read
that from disk. $B2F1 is new code I wrote, and I
promise to show it to you. But first, I get to finish
showing you how the disk read routine works.

Read & Go Seek
In a standard DOS 3.3 RWTS, the softswitch to
read the data latch is “LDA $C08C,X”, where X is
the boot slot times 16, to allow disks to boot from
any slot. Gumboot also supports booting and read-
ing from any slot, but instead of using an index,
most fetch instructions are set up in advance based
on the boot slot. Not only does this free up the X
register, it lets us juggle all the registers and put the

raw nibble value in whichever one is convenient at
the time. (We take full advantage of this freedom.)
I’ve marked each pre-set softswitch with o O.

There are several other instances of addresses
and constants that get modified while Gumboot is
executing. I’ve left these with a bogus value $D1 and
marked them with o O.

Gumboot’s source code should be available from
the same place you found this write-up. If you’re
looking to modify this code for your own purposes,
I suggest you “use the source, Luke.”

*BD00L
BD00 0A ASL
BD01 8D 10 BF STA $BF10

A = the track number to seek
to. We multiply it by 2 to
convert it to a phase, then
store it inside the seek routine
which we will call shortly.

BD04 8E EF BD STX $BDEF X = the number of sectors to
read

BD07 8C 24 BD STY $BD24 Y = the starting address in
memory

BD0A AD E9 C0 LDA $C0E9 o O turn on the drive motor

BD0D 20 75 BF JSR $BF75 poll for real nibbles (#$FF
followed by non-#$FF) as a
way to ensure the drive has
spun up fully

BD10 A9 10 LDA #$10
BD12 CD EF BD CMP $BDEF

are we reading this entire
track?

BD15 B0 01 BCS $BD18 yes -> branch

BD17 AA TAX
BD18 8E 94 BF STX $BF94

no

BD1B 20 04 BF JSR $BF04 seek to the track we want

BD1E AE 94 BF LDX $BF94
BD21 A0 00 LDY #$00
BD23 A9 D1 LDA #$D1 o O

BD25 99 84 BF STA $BF84,Y
BD28 EE 24 BD INC $BD24
BD2B C8 INY
BD2C CA DEX
BD2D D0 F4 BNE $BD23

BD2F 20 D5 BE JSR $BED5

*BED5L

Initialize an array of which
sectors we’ve read from the
current track. The array is in
physical sector order, thus the
RWTS assumes data is stored
in physical sector order on
each track. (This saves 18
bytes: 16 for the table and 2
for the lookup command!)
Values are the actual pages in
memory where that sector
should go, and they get
zeroed once the sector is read
(so we don’t waste time
decoding the same sector
twice).

BED5 20 E4 BE JSR $BEE4
BED8 C9 D5 CMP #$D5
BEDA D0 F9 BNE $BED5
BEDC 20 E4 BE JSR $BEE4
BEDF C9 AA CMP #$AA
BEE1 D0 F5 BNE $BED8
BEE3 A8 TAY
BEE4 AD EC C0 LDA $C0EC o O

BEE7 10 FB BPL $BEE4
BEE9 60 RTS

This routine reads nibbles
from disk until it finds the
sequence “D5 AA”, then it
reads one more nibble and
returns it in the accumulator.
We reuse this routine to find
both the address and data
field prologues.

Continuing from $BD32. . .
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BD32 49 AD EOR #$AD
BD34 F0 35 BEQ $BD6B

BD36 20 C2 BE JSR $BEC2

*BEC2L

If that third nibble is not
#$AD, we assume it’s the end
of the address prologue.
(#$96 would be the third
nibble of a standard address
prologue, but we don’t
actually check.) We fall
through and start decoding
the 4-4 encoded values in the
address field.

BEC2 A0 03 LDY #$03
BEC4 20 E4 BE JSR $BEE4
BEC7 2A ROL
BEC8 8D E0 BD STA $BDE0
BECB 20 E4 BE JSR $BEE4
BECE 2D E0 BD AND $BDE0
BED1 88 DEY
BED2 D0 F0 BNE $BEC4

This routine parses the
4-4-encoded values in the
address field. The first time
through this loop, we’ll read
the disk volume number. The
second time, we’ll read the
track number. The third
time, we’ll read the physical
sector number. We don’t
actually care about the disk
volume or the track number,
and once we get the sector
number, we don’t verify the
address field checksum.

BED4 60 RTS On exit, the accumulator
contains the physical sector
number.

Continuing from $BD39. . .

BD39 A8 TAY use physical sector number as
an index into the sector
address array

BD3A BE 84 BF LDX $BF84,Y get the target page (where we
want to store this sector in
memory)

BD3D F0 F0 BEQ $BD2F if the target page is #$00, it
means we’ve already read this
sector, so loop back to find
the next address prologue

BD3F 8D E0 BD STA $BDE0 store the physical sector
number later in this routine

BD42 8E 64 BD STX $BD64
BD45 8E C4 BD STX $BDC4
BD48 8E 7C BD STX $BD7C
BD4B 8E 8E BD STX $BD8E
BD4E 8E A6 BD STX $BDA6
BD51 8E BE BD STX $BDBE
BD54 E8 INX
BD55 8E D9 BD STX $BDD9
BD58 CA DEX
BD59 CA DEX
BD5A 8E 94 BD STX $BD94
BD5D 8E AC BD STX $BDAC

store the target page in
several places throughout this
routine

BD60 A0 FE LDY #$FE
BD62 B9 02 D1 LDA $D102,Y
BD65 48 PHA
BD66 C8 INY
BD67 D0 F9 BNE $BD62

Save the two bytes
immediately after the target
page, because we’re going to
use them for temporary
storage. (We’ll restore them
later.)

BD69 B0 C4 BCS $BD2F this is an unconditional
branch

BD6B E0 00 CPX #$00 execution continues here
(from $BD34) after matching
the data prologue

BD6D F0 C0 BEQ $BD2F If X is still #$00, it means we
found a data prologue before
we found an address prologue.
In that case, we have to skip
this sector, because we don’t
know which sector it is and
we wouldn’t know where to
put it. Sad!

Nibble loop #1 reads nibbles $00..$55, looks
up the corresponding offset in the preshift table at
$BB96, and stores that offset in the temporary two-
byte buffer after the target page.

BD6F 8D 7E BD STA $BD7E initialize rolling checksum to
#$00, or update it with the
results from the calculations
below

BD72 AE EC C0 LDX $C0EC o O

BD75 10 FB BPL $BD72
read one nibble from disk

BD77 BD 00 BB LDA $BB00,X The nibble value is in the X
register now. The lowest
possible nibble value is $96
and the highest is $FF. To
look up the offset in the table
at $BB96, we index off $BB00 +
X. Math!

BD7A 99 02 D1 STA $D102,Y
o O

Now the accumulator has the
offset into the table of
individual 2-bit combinations
($BC00..$BCFF). Store that
offset in a temporary buffer
towards the end of the target
page. (It will eventually get
overwritten by full 8-bit
bytes, but in the meantime
it’s a useful $56-byte scratch
space.)

BD7D 49 D1 EOR #$D1 o O The EOR value is set at $BD6F
each time through loop #1.

BD7F C8 INY
BD80 D0 ED BNE $BD6F

The Y register started at #$AA
(set by the “TAY” instruction
at $BD39), so this loop reads a
total of #$56 nibbles.

Here endeth nibble loop #1.
Nibble loop #2 reads nibbles $56..$AB, com-

bines them with bits 0-1 of the appropriate nib-
ble from the first $56, and stores them in bytes
$00..$55 of the target page in memory.

BD82 A0 AA LDY #$AA
BD84 AE EC C0 LDX $C0EC o O

BD87 10 FB BPL $BD84
BD89 5D 00 BB EOR $BB00,X
BD8C BE 02 D1 LDX $D102,Y
o O

BD8F 5D 02 BC EOR $BC02,X

BD92 99 56 D1 STA $D156,Y
o O

BD95 C8 INY
BD96 D0 EC BNE $BD84

This address was set at $BD5A
based on the target page
(minus 1 so we can add Y
from #$AA..#$FF).

Here endeth nibble loop #2.
Nibble loop #3 reads nibbles $AC..$101, com-

bines them with bits 2-3 of the appropriate nib-
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ble from the first $56, and stores them in bytes
$56..$AB of the target page in memory.

BD98 29 FC AND #$FC
BD9A A0 AA LDY #$AA
BD9C AE EC C0 LDX $C0EC o O

BD9F 10 FB BPL $BD9C
BDA1 5D 00 BB EOR $BB00,X
BDA4 BE 02 D1 LDX $D102,Y
o O

BDA7 5D 01 BC EOR $BC01,X

BDAA 99 AC D1 STA $D1AC,Y
o O

BDAD C8 INY
BDAE D0 EC BNE $BD9C

This address was set at $BD5D
based on the target page
(minus 1 so we can add Y
from #$AA..#$FF).

Here endeth nibble loop #3.
Loop #4 reads nibbles $102..$155, combines

them with bits 4-5 of the appropriate nibble from
the first $56, and stores them in bytes $AC..$101
of the target page in memory. (This overwrites two
bytes after the end of the target page, but we’ll re-
store then later from the stack.)

BDB0 29 FC AND #$FC
BDB2 A2 AC LDX #$AC
BDB4 AC EC C0 LDY $C0EC o O

BDB7 10 FB BPL $BDB4
BDB9 59 00 BB EOR $BB00,Y
BDBC BC 00 D1 LDY $D100,X
o O

BDBF 59 00 BC EOR $BC00,Y

BDC2 9D 00 D1 STA $D100,X
o O

BDC5 E8 INX
BDC6 D0 EC BNE $BDB4

This address was set at $BD45
based on the target page.

Here endeth nibble loop #4.

BDC8 29 FC AND #$FC
BDCA AC EC C0 LDY $C0EC o O

BDCD 10 FB BPL $BDCA
BDCF 59 00 BB EOR $BB00,Y

Finally, get the last nibble
and convert it to a byte. This
should equal all the previous
bytes XOR’d together. (This
is the standard checksum
algorithm shared by all
16-sector disks.)

BDD2 C9 01 CMP #$01 set carry if value is anything
but 0

BDD4 A0 01 LDY #$01
BDD6 68 PLA
BDD7 99 00 D1 STA $D100,Y
o O

BDDA 88 DEY
BDDB 10 F9 BPL $BDD6

Restore the original data in
the two bytes after the target
page. (This does not affect
the carry flag, which we will
check in a moment, but we
need to restore these bytes
now to balance out the
pushing to the stack we did at
$BD65.)

BDDD B0 8A BCS $BD69 if data checksum failed at
$BDD2, start over

BDDF A0 D1 LDY #$D1 o O

BDE1 8A TXA
This was set to the physical
sector number (at $BD3F), so
this is a index into the
16-byte array at $BF84.

BDE2 99 84 BF STA $BF84,Y store #$00 at this location in
the sector array to indicate
that we’ve read this sector

BDE5 CE EF BD DEC $BDEF
BDE8 CE 94 BF DEC $BF94
BDEB 38 SEC

decrement sector count

BDEC D0 EF BNE $BDDD If the sectors-left-in-this-track
count (in $BF94) isn’t zero
yet, loop back to read more
sectors.

BDEE A2 D1 LDX #$D1 o O

BDF0 F0 09 BEQ $BDFB
If the total sector count (in
$BDEF, set at $BD04 and
decremented at $BDE5) is zero,
we’re done—no need to read
the rest of the track. (This
lets us have sector counts that
are not multiples of 16, i.e.
reading just a few sectors
from the last track of a
multi-track block.)

BDF2 EE 10 BF INC $BF10
BDF5 EE 10 BF INC $BF10

increment phase (twice, so it
points to the next whole
block)

BDF8 4C 10 BD JMP $BD10 jump back to seek and read
from the next track

BDFB AD E8 C0 LDA $C0E8 o O

BDFE 60 RTS
Execution continues here
(from $BDEF). We’re all done,
so turn off drive motor and
exit.

And that’s all she wroteˆHˆHˆHˆHread.

I Make My Verse For The Universe

How’s our master plan from page 47 going? Pretty
darn well, I’d say.

Step 1) write all the game code to a standard disk.
Done.

Step 2) write an RWTS. Done.

Step 3) make them talk to each other.
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The “glue code” for this final step lives
on track 1. It was loaded into mem-
ory at the very end of the boot sector:

089B-   A9 01       LDA   #$01
089D-   A2 03       LDX   #$03
089F-   A0 B0       LDY   #$B0
08A1-   4C 00 BD    JMP   $BD00

That loads 3 sectors from track 1 into
$B000..$B2FF. $B000 is the high scores, which stays
at $B000. $B100 is moved to zero page. $B200 is
the output vector and final initialization code. This
page is never used by the game. (It was used by the
original RWTS, but that has been greatly simplified
by stripping out the copy protection. I love when
that happens!)

Here is my output vector, replacing the code that
originally lived at $BF6F:

*B200L
B200 C9 07 CMP #$07 command or regular

character?
B202 90 03 BCC $B207 command -> branch

B204 6C 3A 00 JMP ($003A) regular character -> print to
screen

B207 85 5F STA $5F store command in zero page

B209 A8 TAY
B20A B9 97 B2 LDA $B297,Y
B20D 8D 19 B2 STA $B219

set up the call to the screen
fill

B210 B9 9E B2 LDA $B29E,Y
B213 8D 1C B2 STA $B21C

set up the call to Gumboot

B216 A9 00 LDA #$00
B218 20 69 B2 JSR $B269 o O

call the appropriate screen fill

B21B 20 2B B2 JSR $B22B o O call Gumboot

B21E A5 5F LDA $5F
B220 0A ASL
B221 A8 TAY

find the entry point for this
block

B222 B9 A6 B2 LDA $B2A6,Y
B225 48 PHA
B226 B9 A5 B2 LDA $B2A5,Y
B229 48 PHA

push the entry point to the
stack

B22A 60 RTS and exit via “RTS”

This is the routine that calls Gumboot to load
the appropriate blocks of game code from the disk,
according to the disk map on page 47. Here is the
summary of which sectors are loaded by each block:

cmd track (A) count (X) page (Y)
$00 $02 $38 $08

$06 $28 $60
$01 $09 $38 $08

$0D $50 $60
$02 $12 $38 $08

$16 $28 $60
$03 $19 $20 $20

(The parameters for command #$06 are the same
as command #$01.)

The lookup at $B210 modified the “JSR” instruc-
tion at $B21B, so each command starts in a different
place:

B22B A9 02 LDA #$02
B22D 20 56 B2 JSR $B256
B230 A9 06 LDA #$06
B232 D0 1C BNE $B250

command #$00

B234 A9 09 LDA #$09
B236 20 56 B2 JSR $B256
B239 A9 0D LDA #$0D
B23B A2 50 LDX #$50
B23D D0 13 BNE $B252

command #$01

B23F A9 12 LDA #$12
B241 20 56 B2 JSR $B256
B244 A9 16 LDA #$16
B246 D0 08 BNE $B250

command #$02

B248 A9 19 LDA #$19
B24A A2 20 LDX #$20
B24C A0 20 LDY #$20
B24E D0 0A BNE $B25A
B250 A2 28 LDX #$28
B252 A0 60 LDY #$60
B254 D0 04 BNE $B25A
B256 A2 38 LDX #$38
B258 A0 08 LDY #$08
B25A 4C 00 BD JMP $BD00

command #$03

B25D A9 01 LDA #$01
B25F 20 00 BF JSR $BF00
B262 A9 00 LDA #$00
B264 A0 B0 LDY #$B0
B266 4C 00 BE JMP $BE00

command #$04: seek to track
1 and write $B000..$B0FF to
sector 0
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B269 A5 60 LDA $60
B26B 4D 50 C0 EOR $C050
B26E 85 60 STA $60
B270 29 0F AND #$0F
B272 F0 F5 BEQ $B269
B274 C9 0F CMP #$0F
B276 F0 F1 BEQ $B269
B278 20 66 F8 JSR $F866
B27B A9 17 LDA #$17
B27D 48 PHA
B27E 20 47 F8 JSR $F847
B281 A0 27 LDY #$27
B283 A5 30 LDA $30
B285 91 26 STA ($26),Y
B287 88 DEY
B288 10 FB BPL $B285
B28A 68 PLA
B28B 38 SEC
B28C E9 01 SBC #$01
B28E 10 ED BPL $B27D
B290 AD 56 C0 LDA $C056
B293 AD 54 C0 LDA $C054
B296 60 RTS

exact replica of the screen fill
code that was originally at
$BEB0

B297 [69 7B 69 69 96 96 69] lookup table for screen fills

B29E [2B 34 3F 48 2A 2A 34] lookup table for Gumboot
calls

B2A5 [9C 0F]
B2A7 [F8 31]
B2A9 [34 10]
B2AB [57 FF]
B2AD [5C B2]
B2AF [95 B2]
B2B1 [77 23]

lookup table for entry points

Last but not least, a short routine at $B2F1 to
move zero page into place and start the game. (This
is called because we pushed #$B2/#$F0 to the stack
in our boot sector, at $0895.)

*B2F1L
B2F1 A2 00 LDX #$00
B2F3 BD 00 B1 LDA $B100,X
B2F6 95 00 STA $00,X
B2F8 E8 INX
B2F9 D0 F8 BNE $B2F3

copy $B100 to zero page

B2FB A9 00 LDA #$00
B2FD 4C ED FD JMP $FDED

print a null character to start
the game

Quod erat liberand one more thing. . .

Oops

Heeeeey there. Remember this code?
0372 A9 34 LDA #$34
0374 48 PHA
. . .
0378 28 PLP

Here’s what I said about it when I first saw it:
pop that #$34 off the stack, but use it as status registers (weird,

but legal—if it turns out to matter, I can figure out exactly which
status bits get set and cleared)

Yeah, so that turned out to be more important
than I thought. After extensive play testing, we26
discovered the game becomes unplayable on level 3.

How unplayable? Gates that are open won’t
close; balls pass through gates that are already
closed; bins won’t move more than a few pixels.

So, not a crash, and (contrary to our first guess)
not an incompatibility with modern emulators. It
affects real hardware too, and it was intentional.
Deep within the game code, there are several in-
stances of code like this:

T0A,S00

----------- DISASSEMBLY MODE ----------

0021:08            PHP
0022:68            PLA

0023:29 04         AND  #$04

0025:D0 0A         BNE  $0031

0027:A5 18         LDA  $18

0029:C9 02         CMP  #$02
002B:90 04         BCC  $0031

002D:A9 10         LDA  #$10

002F:85 79         STA  $79
0031:A5 79         LDA  $79

0033:85 7A         STA  $7A

“PHP” pushes the status registers on the stack,
but “PLA” pulls a value from the stack and stores it
as a byte, in the accumulator. That’s. . . weird. Also,
it’s the reverse of the weird code we saw at $0372,
which took a byte in the accumulator and blitted it
into the status registers. Then “AND #$04” isolates
one status bit in particular: the interrupt flag. The
rest of the code is the game-specific way of making
the game unplayable.

This is a very convoluted, obfuscated, sneaky
way to ensure that the game was loaded through
its original bootloader. Which, of course, it wasn’t.

The solution: after loading each block of game
code and pushing the new entry point to the stack,
set the interrupt flag.

B222 B9 A6 B2 LDA $B2A6,Y
B225 48 PHA
B226 B9 A5 B2 LDA $B2A5,Y
B229 48 PHA

pop that #$34 off the stack,
but use it as status registers
(weird, but legal—if it turns
out to matter, I can figure out
exactly which status bits get
set and cleared) push the
entry point to the stack

B22A 78 SEI set the interrupt flag (new!)

B22B 60 RTS and exit via “RTS”

Many thanks to Marco V. for reporting this and
helping reproduce it; qkumba for digging into it to
find the check within the game code; Tom G. for
making the connection between the interrupt flag
and the weird “LDA/PHA/PLP” code at $0372.

26not me, and not qkumba either, who beat the entire game twice. It was Marco V. Thanks, Marco!
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This Is Not The End, Though
This game holds one more secret, but it’s not related
to the copy protection, thank goodness. As far as
I can tell, this secret has not been revealed in 33
years. qkumba found it because of course he did.

Once the game starts, press Ctrl-J to switch to
joystick mode. Press and hold button 2 to activate
“targeting” mode, then move your joystick to the
bottom-left corner of the screen and also press but-
ton 1. The screen will be replaced by this message:

PRESS CTRL-Z DURING THE CARTOONS

Now, the game has 5 levels. After you com-
plete a level, your character gets promoted: worker,
foreman, supervisor, manager, and finally vice pres-
ident. Each of these is a little cartoon—what kids
today would call a cut scene. When you complete
the entire game, it shows a final screen and your
character retires.

Pressing Ctrl-Z during each cartoon reveals four
ciphers.

After level 1:

RBJRY JSYRR

After level 2:

VRJJRY ZIAR

After level 3:

ESRB

After level 4:

FIG YRJMYR

Taken together, they form a simple substitution
cipher:

• ENTER THREE

• LETTER CODE

• WHEN

• YOU RETIRE

But what is the code?
It turns out that pressing Ctrl-Z again, while

any of the pieces of the cipher are on screen, reveals
another clue:

DOUBLE HELIX

Entering the three-letter code DNA at the “retire-
ment” screen reveals the final secret message:

AHA!  YOU MADE IT!

EITHER YOU ARE AN EXCELLENT GAME-PLAYER

OR (GAH!) PROGRAM-BREAKER!

YOU ARE CERTAINLY ONE OF THE FEW PEOPLE

THAT WILL EVER SEE THIS SCREEN.

THIS IS NOT THE END, THOUGH.

IN ANOTHER BR0DERBUND PRODUCT

TYPE 'Z0DWARE' FOR MORE PUZZLES.

HAVE FUN! BYE!!

                   R.A.C.

At time of writing, no one has found the
“Z0DWARE” puzzle. You could be the first!

Keys and Controls
The game can be played with a joystick or keyboard.

Ctrl-J switch to joystick mode

Ctrl-K switch to keyboard mode

When using a keyboard:

S move bins left

D stop bins

F move bins right

Space switch in-tube gates

E increase speed

C decrease speed

Return toggle target sighting

U I O move the target sight
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J K L (for when the bombs
M , . start dropping)

When using a joystick:

buttons 0+1 toggle target sighting

Ctrl-X flip joystick X axis
Ctrl-Y flip joystick Y axis

Other keys:

Ctrl-S toggle sound on/off
Ctrl-R restart level
Ctrl-Q restart game
Ctrl-H view high scores
Esc pause/resume game

After the game starts, press Ctrl-U Ctrl-C
Ctrl-B in sequence to see a secret credits page that
lists most of the people involved in making the game.
Sadly, the author of the copy protection is not listed.
        >>>>>>>> CREDITS <<<<<<<<

THE FOLLOWING PEOPLE HAD SOMETHING TO DO
  WITH THE COMPLETION OF THIS PROGRAM:

HENRY MENDOZA      JON LOEB
ANDY ARMSTRONG     FRANK PAP
DON HOHL           RON LEAR
JULIE LETERNEAU    MARK COOK
CHRIS QUAN         MILTON & ROBERTA COOK
PAT MCCARTHY       COREY KOSAK
PAUL CASAUDOUMECQ  MR. STAUB
JIM KASSENBROCK    U.C.B.C.

   AND ALL OF THE AMAZING PEOPLE AT

              BR0DERBUND

Cheats

I have not enabled any cheats on our release, but I
have verified that they work. You can use any or all
of them:

Stop the clock
T09,S0A,$B1
change 01 to 00

Start on level 2-5
T09,S0C,$53
change 00 to <level-1>
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15:07 In Which a PDF is a Git Repository
Containing its own LATEX Source
and a Copy of Itself

by Evan Sultanik

Have you ever heard of the git bundle com-
mand? I hadn’t. It bundles a set of Git objects—
potentially even an entire repository—into a single
file. Git allows you to treat that file as if it were
a standard Git database, so you can do things like
clone a repo directly from it. Its purpose is to easily
sneakernet pushes or even whole repositories across
air gaps.

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

Neighbors, it’s possible to create a PDF that is
also a Git repository.

$ git clone PDFGitPolyglot.pdf foo
Cloning into ’foo’...
Receiving objects: 100% (174/174), 103.48 KiB, done.
Resolving deltas: 100% (100/100), done.
$ cd foo
$ ls
PDFGitPolyglot.pdf PDFGitPolyglot.tex

15:07.1 The Git Bundle File Format

The file format for Git bundles doesn’t appear to
be formally specified anywhere, however, inspecting
bundle.c reveals that it’s relatively straightforward:

# v2 git bundle ←↩
Git Bundle Signature

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5
refs/heads/master ←↩

3aa340a2e3d125ab6703e5c9bdfede2054a9c0c5
refs/remotes/origin/master ←↩

4146cfe2fe9249fc14623f832587efe197ef5d2d
refs/stash ←↩

babdda4735ef164b7023be3545860d8b0bae250a
HEAD ←↩

D
igest

←↩

PACK. . .
Git Packfile

Git has another custom format called a Packfile that
it uses to compress the objects in its database, as
well as to reduce network bandwidth when pushing
and pulling. The packfile is therefore an obvious
choice for storing objects inside bundles. This of

course raises the question: What is the format for a
Git Packfile?

Git does have some internal documentation in

Documentation/technical/pack-format.txt

however, it is rather sparse, and does not provide
enough detail to fully parse the format. The docu-
mentation also has some “observations” that suggest
it wasn’t even written by the file format’s creator
and instead was written by a developer who was
later trying to make sense of the code.

Luckily, Aditya Mukerjee already had to reverse
engineer the file format for his GitGo clean-room
implementation of Git, and he wrote an excellent
blog entry about it.27

‘P’ ‘A’ ‘C’ ‘K’ 00 00 00 02 # objects
magic version big-endian 4 byte int

one data chunk for each object
20-byte SHA-1 of all the previous data in the pack

Although not entirely required to understand the
polyglot, I think it is useful to describe the git pack-
file format here, since it is not well documented else-
where. If that doesn’t interest you, it’s safe to skip
to the next section. But if you do proceed, I hope
you like Soviet holes, dear neighbor, because chasing
this rabbit might remind you of Кольская.

27https://codewords.recurse.com/issues/three/unpacking-git-packfiles
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Right, the next step is to figure out the “chunk”
format. The chunk header is variable length, and
can be as small as one byte. It encodes the object’s
type and its uncompressed size. If the object is a
delta (i.e., a diff, as opposed to a complete object),
the header is followed by either the SHA-1 hash of
the base object to which the delta should be ap-
plied, or a byte reference within the packfile for the
start of the base object. The remainder of the chunk
consists of the object data, zlib-compressed.

The format of the variable length chunk header
is pictured in Figure 4. The second through fourth
most significant bits of the first byte are used to
store the object type. The remainder of the bytes
in the header are of the same format as bytes two
and three in this example. This example header
represents an object of type 112, which happens
to be a git blob, and an uncompressed length of
(1002 << 14) + (10101102 << 7) + 10010012 = 76,617
bytes. Since this is not a delta object, it is imme-
diately followed by the zlib-compressed object data.
The header does not encode the compressed size of
the object, since the DEFLATE encoding can de-
termine the end of the object as it is being decom-
pressed.

At this point, if you found The Life and Opin-
ions of Tristram Shandy to be boring or frustrating,
then it’s probably best to skip to the next section,
’cause it’s turtles all the way down.

To come at the exa� weight of things in
the scientific õeel-yard, the fulchrum, [Wal-
ter Shandy] would say, should be almoõ in-
visible, to avoid all fri�ion from popular
tenets;—without this the minutiæ of philos-
ophy, which should always turn the balance,
will have no weight at all. Knowledge, like
matter, he would affirm, was divisible in
infinitum;—that the grains and scruples were
as much a part of it, as the gravitation of the
whole world.

“

”
There are two types of delta objects: refer-

ences (object type 7) and offsets (object type 6).
Reference delta objects contain an additional
20 bytes at the end of the header before the zlib-
compressed delta data. These 20 bytes contain the
SHA-1 hash of the base object to which the delta
should be applied. Offset delta objects are exactly
the same, however, instead of referencing the base
object by its SHA-1 hash, it is instead represented
by a negative byte offset to the start of the ob-
ject within the pack file. Since a negative byte off-

set can typically be encoded in two or three bytes,
it’s significantly smaller than a 20-byte SHA-1 hash.
One must understand how these offset delta objects
are encoded if—say, for some strange, masochistic
reason—one wanted to change the order of objects
within a packfile, since doing so would break the
negative offsets. (Foreshadowing!)

One would think that git would use the same
multi-byte length encoding that they used for the
uncompressed object length. But no! This is what
we have to go off of from the git documentation:

n bytes with MSB set in all but the last one.
The offset is then the number constructed by
concatenating the lower 7 bit of each byte, and
for n >= 2 adding 2^7 + 2^14 + ... + 2^(7*(n-1))
to the result.

Right. Some experimenting resulted in the following
decoding logic that appears to work:

def decode_obj_ref(data):
bytes_read = 0
reference = 0
for c in map(ord, data):

bytes_read += 1
reference <<= 7
reference += c & 0b01111111
if not (c & 0b10000000):

break
if bytes_read >= 2:

reference += (1 << (7 * (bytes_read - 1)))
return reference, bytes_read

The rabbit hole is deeper still; we haven’t yet dis-
covered the content of the compressed delta objects,
let alone how they are applied to base objects. At
this point, we have more than sufficient knowledge
to proceed with the PoC, and my canary died ages
ago. Aditya Mukerjee did a good job of explaining
the process of applying deltas in his blog post, so I
will stop here and proceed with the polyglot.

15:07.2 A Minimal Polyglot PoC

We now know that a git bundle is really just a git
packfile with an additional header, and a git packfile
stores individual objects using zlib, which uses the
DEFLATE compression algorithm. DEFLATE sup-
ports zero compression, so if we can store the PDF
in a single object (as opposed to it being split into
deltas), then we could theoretically coerce it to be
intact within a valid git bundle.

Forcing the PDF into a single object is easy: We
just need to add it to the repo last, immediately
before generating the bundle.
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1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1
first byte second byte third byte

object type

if the MSB is one,
then this is not
the last byte

first four
bits of

the length
(big-endian)

MSB is one,
so this is not the last byte

the next seven
bits of the length

(big-endian)

MSB is zero,
so this is the last byte

the next seven
bits of the length

(big-endian)

Figure 4. Format of the git packfile’s variable length chunk header.

Getting the object to be compressed with zero
compression is also relatively easy. That’s because
git was built in almost religious adherence to The
UNIX Philosophy: It is architected with hundreds of
sub commands it calls “plumbing,” of which the vast
majority you will likely have never heard. For ex-
ample, you might be aware that git pull is equiv-
alent to a git fetch followed by a git merge. In
fact, the pull code actually spawns a new git
child process to execute each of those subcommands.
Likewise, the git bundle command spawns a git
pack-objects child process to generate the packfile
portion of the bundle. All we need to do is inject
the --compression=0 argument into the list of com-
mand line arguments passed to pack-objects. This
is a one-line addition to bundle.c:

argv_array_pushl(
&pack_objects.args,
"pack-objects", "--all-progress-implied",
"--compression=0",
"--stdout", "--thin", "--delta-base-offset",
NULL);

Using our patched version of git, every object
stored in the bundle will be uncompressed!

$ export PATH=/path/to/patched/git:$PATH
$ git init
$ git add article.pdf
$ git commit article.pdf -m "added"
$ git bundle create PDFGitPolyglot.pdf --all

Any vanilla, un-patched version of git will be able to
clone a repo from the bundle. It will also be a valid
PDF, since virtually all PDF readers ignore garbage
bytes before and after the PDF.

15:07.3 Generalizing the PoC
There are, of course, several limitations to the min-
imal PoC given in the previous section:

1. Adobe, being Adobe, will refuse to open the
polyglot unless the PDF is version 1.4 or ear-
lier. I guess it doesn’t like some element of the
git bundle signature or digest if it’s PDF 1.5.
Why? Because Adobe, that’s why.

2. Leaving the entire Git bundle uncompressed is
wasteful if the repo contains other files; really,
we only need the PDF to be uncompressed.

3. If the PDF is larger than 65,535 bytes—the
maximum size of an uncompressed DEFLATE
block—then git will inject 5-byte deflate block
headers inside the PDF, likely corrupting it.

4. Adobe will also refuse to open the polyglot
unless the PDF is near the beginning of the
packfile.28

The first limitation is easy to fix by instruct-
ing LATEX to produce a version 1.4 PDF by adding
\pdfminorversion=4 to the document.

The second limitation is a simple matter of soft-
ware engineering, adding a command line argument
to the git bundle command that accepts the hash
of the single file to leave uncompressed, and passing
that hash to git pack-objects. I have created a
fork of git with this feature.29

As an aside, while fixing the second limitation
I discovered that if a file has multiple PDFs con-
catenated after one another (i.e., a git bundle poly-
glot with multiple uncompressed PDFs in the repo),
then the behavior is viewer-dependent: Some view-
ers will render the first PDF, while others will ren-
der the last. That’s a fun way to generate a PDF
that displays completely different content in, say,
macOS Preview versus Adobe.

The third limitation is very tricky, and ulti-
mately why this polyglot was not used for the PDF

28Requiring the PDF header to start near the beginning of a file is common for many, but not all, PDF viewers.
29https://github.com/ESultanik/git/tree/UncompressedPack

62



of this issue of PoC‖GTFO. I’ve a solution, but it
will not work if the PDF contains any objects (e.g.,
images) that are larger than 65,535 bytes. A uni-
versal solution would be to break up the image into
smaller ones and tile it back together, but that is not
feasible for a document the size of a PoC‖GTFO is-
sue.

DEFLATE headers for uncompressed blocks are
very simple: The first byte encodes whether the fol-
lowing block is the last in the file, the next two bytes
encode the block length, and the last two bytes are
the ones’ complement of the length. Therefore, to
resolve this issue, all we need to do is move all of
the DEFLATE headers that zlib created to different
positions that won’t corrupt the PDF, and update
their lengths accordingly.

Where can we put a 5-byte DEFLATE header
such that it won’t corrupt the PDF? We could
use our standard trick of putting it in a PDF ob-
ject stream that we’ve exploited countless times be-
fore to enable PoC‖GTFO polyglots. The trouble
with that is: Object streams are fixed-length, so
once the PDF is decompressed (i.e., when a repo is
cloned from the git bundle), then all of the 5-byte
DEFLATE headers will disappear and the object
stream lengths would all be incorrect. Instead, I
chose to use PDF comments, which start at any oc-
currence of the percent sign character (%) outside a
string or stream and continue until the first occur-
rence of a newline. All of the PDF viewers I tested
don’t seem to care if comments include non-ASCII
characters; they seem to simply scan for a newline.
Therefore, we can inject “%\n” between PDF objects
and move the DEFLATE headers there. The only
caveat is that the DEFLATE header itself can’t con-
tain a newline byte (0x0A), otherwise the comment
would be ended prematurely. We can resolve that,
if needed, by adding extra spaces to the end of the
comment, increasing the length of the following DE-
FLATE block and thus increasing the length bytes
in the DEFLATE header and avoiding the 0x0A.
The only concession made with this approach is that
PDF Xref offsets in the deflated version of the PDF
will be off by a multiple of 5, due to the removed
DEFLATE headers. Fortunately, most PDF read-
ers can gracefully handle incorrect Xref offsets (at
the expense of a slower loading time), and this will
only affect the PDF contained in the repository, not
the PDF polyglot.

As a final step, we need to update the SHA-1 sum
at the end of the packfile (q.v. Section 15:07.1), since

we moved the locations of the DEFLATE headers,
thus affecting the hash.

At this point, we have all the tools necessary to
create a generalized PDF/Git Bundle polyglot for
almost any PDF and git repository. The only re-
maining hurdle is that some viewers require that the
PDF occur as early in the packfile as possible. At
first, I considered applying another patch directly to
the git source code to make the uncompressed ob-
ject first in the packfile. This approach proved to
be very involved, in part due to git’s UNIX design
philosophy and architecture of generic code reuse.
We’re already updating the packfile’s SHA-1 hash
due to changing the DEFLATE headers, so instead I
decided to simply reorder the objects after-the-fact,
subsequent to the DEFLATE header fix but before
we update the hash. The only challenge is that mov-
ing objects in the packfile has the potential to break
offset delta objects, since they refer to their base ob-
jects via a byte offset within the packfile. Moving
the PDF to the beginning will break any offset delta
objects that occur after the original position of the
PDF that refer to base objects that occur before the
original position of the PDF. I originally attempted
to rewrite the broken offset delta objects, which is
why I had to dive deeper into the rabbit hole of the
packfile format to understand the delta object head-
ers. (You saw this at the end of Section 15:07.1, if
you were brave enough to finish it.) Rewriting the
broken offset delta objects is the correct solution,
but, in the end, I discovered a much simpler way.

As a matter of fact, G-d just questioned my
judgment. He said, ‘Terry, are you worthy to
be the man who makes The Temple? If you
are, you must answer: Is this [dastardly], or
is this divine intellect?’

“

”
—Terry A. Davis, creator of TempleOS
self-proclaimed “smartest
programmer that’s ever lived”

Terry’s not the only one who’s written a com-
piler!

In the previous section, recall that we created
the minimal PoC by patching the command line
arguments to pack-objects. One of the com-
mand line arguments that is already passed by de-
fault is --delta-base-offset. Running git help
pack-objects reveals the following:
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A packed archive can express the base object
of a delta as either a 20-byte object name
or as an offset in the stream, but ancient
versions of Git don’t understand the latter.
By default, git pack-objects only uses the
former format for better compatibility. This
option allows the command to use the latter
format for compactness. Depending on the
average delta chain length, this option
typically shrinks the resulting packfile by
3-5 per-cent.

So all we need to do is remove the
--delta-base-offset argument and git will not
include any offset delta objects in the pack!

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

Okay, I have to admit something: There is
one more challenge. You see, the PDF stan-
dard (ISO 32000-1) says

The trailer of a PDF file enables a conform-
ing reader to quickly find the cross-reference
table and certain special objects. Conform-
ing readers should read a PDF file from its
end. The last line of the file shall contain
only the end-of-file marker, %%EOF.

“

”
Granted, we are producing a PDF that conforms to
version 1.4 of the specification, which doesn’t ap-
pear to have that requirement. However, at least as
early as version 1.3, the specification did have an im-
plementation note that Acrobat requires the %%EOF
to be within the last 1024 bytes of the file. Either
way, that’s not guaranteed to be the case for us, es-
pecially since we are moving the PDF to be at the
beginning of the packfile. There are always going to
be at least 20 trailing bytes after the PDF’s %%EOF
(namely the packfile’s final SHA-1 checksum), and
if the git repository is large, there are likely to be
more than 1024 bytes.

Fortunately, most common PDF readers don’t
seem to care how many trailing bytes there are, at
least when the PDF is version 1.4. Unfortunately,
some readers such as Adobe’s try to be “helpful,”
silently “fixing” the problem and offering to save the
fixed version upon exit. We can at least partially fix

the PDF, ensuring that the %%EOF is exactly 20 bytes
from the end of the file, by creating a second un-
compressed git object as the very end of the packfile
(right before the final 20 byte SHA-1 checksum).
We could then move the trailer from the end of the
original PDF at the start of the pack to the new git
object at the end of the pack. Finally, we could en-
capsulate the “middle” objects of the packfile inside
a PDF stream object, such that they are ignored by
the PDF. The tricky part is that we would have to
know how many bytes will be in that stream before
we add the PDF to the git database. That’s theoret-
ically possible to do a priori, but it’d be very labor
intensive to pull off. Furthermore, using this ap-
proach will completely break the inner PDF that is
produced by cloning the repository, since its trailer
will then be in a separate file. Therefore, I chose to
live with Adobe’s helpfulness and not pursue this fix
for the PoC.

·——· ——— —·—· ——— ·—· ——· — ·–—· ———

The feelies contain a standalone PDF of this ar-
ticle that is also a git bundle containing its LATEX
source, as well as all of the code necessary to regen-
erate the polyglot.30 Clone it to take a look at the
history of this article and its associated code! The
code is also hosted on GitHub31.

Thus—thus, my fellow-neighbours and as-
sociates in this great harveõ of our learn-
ing, now ripening before our eyes; thus it
is, by ôow õeps of casual increase, that our
knowledge physical, metaphysical, physiolog-
ical, polemical, nautical, mathematical, ænig-
matical, technical, biographical, romantical,
chemical, obõetrical, and polyglottical, with
fifty other branches of it, (moõ of ’em end-
ing as these do, in ical) have for these four laõ
centuries and more, gradually been creeping
upwards towards that Akme of their perfec-
tions, from which, if we may form a conjec-
ture from the advances of these laõ pages,
we cannot possibly be far off.

5

30unzip pocorgtfo15.pdf PDFGitPolyglot.pdf
31https://github.com/ESultanik/PDFGitPolyglot

64



POC-1337 INSTRUMENTS

Cyberencabulator
Jan. 1, 1970

Data subject to change without notice

FUNCTION
To measure inverse reactive current in uni-

versal phase detractors with display of percent
realization.

OPERATION
Based on the principle of power generation

by the modial interaction of magnetoreluctance
and capacitative diractance, the Cyberencab-
ulator negates the relative motion of conven-
tional conductors and fluxes. It consists of a
baseplate of prefabulated Amulite, surmounted
by a malleable logarithmic casing in such a
way that the two main spurving bearings are
aligned with the parametric fan.

Six gyro-controlled antigravic marzelvanes
are attached to the ambifacent wane shafts to
prevent internal precession. Along the top,
adjacent to the panandermic semi-boloid sta-
tor slots, are forty-seven manestically spaced
grouting brushes, insulated with Glyptal-
impregnated, cyanoethylated kraft paper bush-
ings. Each one of these feeds into the rotor
slip-stream, via the non-reversible differential
tremie pipes, a 5 per cent solution of reminative
Tetraethyliodohexamine, the specific pericosity
of which is given by P = 2.5C6÷7

n , where “C”
is Chlomondeley’s annular grillage coefficient
and “n” is the diathetical evolute of retrograde
temperature phase disposition.

The two panel meters display inrush cur-
rent and percent realization. In addition,
whenever a barescent skor motion is required,
it may be employed with a reciprocating dingle
arm to reduce the sinusoidal depleneration in
nofer trunions.

Solutions are checked via Zahn Viscosime-
try techniques. Exhaust orifices receive stan-
dard Blevinometric tests. There is no known
Orth Effect.

TECHNICAL FEATURES

• Panandermic semi-boloid stator slots

• Panel meter covers treated with Shure
Stat (guaranteed to build up electrostatic
charge in less than 1 second).

• Manestically spaced grouting brushes

• Prefabulated Amulite baseplate

• Pentametric fan

STANDARD RATINGS
New Computer

Old Insensitive
Rating Catalog No. Catalog No.

0–1024 8080808G6S* 25504446POC1†

* Included Qty. 6 NO-BLO‡ fuses.
† Includes Magnaglas circuit breaker with

polykrapolene-coated contacts rated 75A
Wolfram.

‡ Reg. T.M. Shenzhen Xiao Baoshi Elec-
tronics Co., Ltd.

ACCESSORIES
1. 8 ounces 5 per cent Tetraethyliodohexam-

ine with 0.01N Halogen tracer solution.
2. Interelectrode diffusion integrator.
3. Noninductive-wound inverse conductance

control in little black box.
4. Analog to digital converter with reflected

levorotatory BCD output (binary-coded
decimal i.e.: 7, 4, 2, 1).

5. Quasistatic regeneration oscillator with
output conductance of 17.8 millimhos.

APPLICATION
Measuring Inverse Reactive Current—

CAUTION: Because of the replenerative flow
characteristics of positive ions in unilateral
phase detractors, the use of the quasistatic
regeneration oscillator is recommended if Cy-
berencabulator is used outside of an air condi-
tioned server room.

Reduction of Sinusoidal Depleneration
—Before use, the system should be calibrated
with a gyro-controlled Sine-Wave Director, the
output of which should be of the cathode fol-
lower type.

Note: If only Cosine-Wave Directors are avail-
able, their output must be first fed into a Phase
Inverter with parametric negative-time com-
pensators. Caution: Only Phase Inverters with
an output conductance of 17.8 ± 1 millimhos
should be employed so as to match the charac-
teristics of the quasistatic regeneration oscilla-
tor.

Voltage Levels—Above 750V Do Not Use
Caged Resistors to get within self-contained
rating of Cyberencabulator. Do Use Sequen-
tial Transformers. See POC-9001.

Multiple Ratings—Optionally available in mul-
tiples of π (22/7) and e (19/7). If binary or other
number-base systems ratios are required, refer
to the fuctoŕıa for availability and pricing.

Goniometric Data—Upon request, curves are
supplied, at additional charge, for regions
wherein the molecular MFP (Mean Free Path)
is between 1.6 and 19.62 Angstrom units.
Curves, relevant to regions outside the above-
listed range,

may be obtained from:

Tract Association of PoC‖GTFO and
Friends, GmbH
Cloud Computing Cyberencabulator
Dept. (C3D)
Tennessee, ’Murrica

In Canada address request to:

Cyberencabulateurs
Canaderpien-Français Ltée.
468 Jean de Quen, Quebec 10, P.Q.

Reference Texts
1. Zeitschrift für Physik

Der Zerfall von Dunge LBM-1
H. Sturtzkampflieger, Berlin, DDR

2. Svenska Teckniska Skatologika
Lärovarken
Dagblad 121–G. Petterson & W. Johann-
son, Stockholm

3. Journaux de l’Academie Française
Numero 606B
T. L’Ouverture, Paris

4. Szkola Polska
Cyberencabulatorskiego
Og loszenie 1411–7
Iwan Jędrek S., Rzeżuśnia

5. Texas Inst. of Cyberencabulation
AITE Bull. 312–52, J. J. Fleck, Dallas.

6. THE VISE №7
AvE, Canuckistan

7. Хроника Технологических Событий
Святейший Маноль Лафройг

SPECIFICATIONS
Accuracy: ±1 per cent of point

Repeatability: ±1/4 per cent

Maintenance Required: Bimonthly treatment
of Meter covers with Shure Stat.

Ratings: None (Standard); All (Optional)

Fuel Efficiency: 1.337 Light-Years per Sydharb

Input Power: Volts—120/240/480/550 AC
Amps—10/5/2.5/2.2 A
Watts—1200 W
Wave Shape—Sinusoidal,
Cosinusoidal, Tangential, or
Pipusoidal.

Operating Environment:

Temperature 32F to 150F (0C to 66C)

Max Magnetic Field: 15 Mendelsohns

(1 Mendelsohn = 32.6 Statoersteds)

Case: Material: Amulite; Tremie-pipes are of
Chinesium—(Tungsten Cowhide)

Weight: Net 134 lbs.; Ship 213 lbs.

DIMENSION DRAWINGS
On delivery.

EXTERNAL WIRING
On delivery.

Page 65



15:08 Zero Overhead Networking
by Robert Graham

The kernel is a religion. We programmers are
taught to let the kernel do the heavy lifting for us.
We the lay folks are taught how to propitiate the
kernel spirits in order to make our code go faster.
The priesthood is taught to move their code into
the kernel, as that is where speed happens.

This is all a lie. The true path to writing high-
speed network applications, like firewalls, intrusion
detection, and port scanners, is to completely by-
pass the kernel. Disconnect the network card from
the kernel, memory map the I/O registers into user
space, and DMA packets directly to and from user-
mode memory. At this point, the overhead drops to
near zero, and the only thing that affects your speed
is you.

Masscan

Masscan is an Internet-scale port scanner, meaning
that it can scan the range /0. By default, with no
special options, it uses the standard API for raw
network access known as libpcap. Libpcap itself is
just a thin API on top of whatever underlying API
is needed to get raw packets from Linux, macOS,
BSD, Windows, or a wide range of other platforms.

But Masscan also supports another way of get-
ting raw packets known as PF_RING. This runs the
driver code in user-mode. This allows Masscan to
transmit packets by sending them directly to the
network hardware, bypassing the kernel completely
(no memory copies, no kernel calls). Just put "zc:"
(meaning PF_RING ZeroCopy) in front of an adapter
name, and Masscan will load PF_RING if it exists and
use that instead of libpcap.

In the section below, we are going to analyze the
difference in performance between these two meth-
ods. On the test platform, Masscan transmits at 1.5
million packets-per-second going through the kernel,
and trasnmits at 8 million packets-per-second when
going though PF_RING.

We are going to run the Linux profiling tool
called perf to find out where the CPU is spending
all its time in both scenarios.

Raw output from perf is difficult to read, so
the results have been processed through Brendan
Gregg’s FlameGraph tool. This shows the call stack
of every sample it takes, showing the total time in
the caller as well as the smaller times in each func-

tion called, in the next layer. This produces SVG
files, which allow you to drill down to see the full
function names, which get clipped in the images.

I first run Masscan using the standard libpcap
API, which sends packets via the kernel, the normal
way. Doing it this way gets a packet rate of about
1.5 million packets-per-second, as shown in Figure 5.

To the left, you can see how perf is confused by
the call stack, with [unknown] functions. Analyzing
this part of the data shows the same call stacks that
appear in the central section. Therefore, assume all
that time is simply added onto similar functions in
that area, on top of __libc_send().

The large stack of functions to the right is perf
profiling itself.

In the section to the right where Masscan is run-
ning, you’ll notice little towers on top of each func-
tion call. Those are the interrupt handlers in the
kernel. They technically aren’t part of Masscan,
but whenever an interrupt happens, registers are
pushed onto the stack of whichever thread is cur-
rently running. Thus, with high enough resolution
(faster samples, longer profile duration), perf will
count every function as having spent time in an in-
terrupt handler.

The next run of Masscan bypasses the kernel
completely, replacing the kernel’s Ethernet driver
with the user-mode driver PF_RING. It uses the same
options, but adds "zc:" in front of the adapter name.
It transmits at 8 million packets-per-second, using
an Ivy Bridge processor running at 3.2 GHz (tur-
boed up from 2.5 GHz). Shown in Figure 6, this
results in just 400 cycles per packet!

The first thing to notice here is that 3.2 GHz di-
vided by 8 mpps equals 400 clock cycles per packet.
If we looked at the raw data, we could tell how many
clock cycles each function is taking.

Masscan sits in a tight scanner loop called
transmit_thread(). This should really be below
all the rest of the functions in this flame graph,
but apparently perf has trouble seeing the full call
stack.

The scanner loop does the following calculations:

• It randomizes the address in blackrock_-
shuffle()

• It calculates a SYN cookie using the siphash-
24() hashing function
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1 marks the start of entry_SYSCALL_64_fastpath(), where the machine transitions from user to kernel
mode. Everything above this is kernel space. That’s why we use perf rather than user-mode profilers like
gprof, so that we can see the time taken in the kernel.

2 marks the function packet_sendmsg(), which does all the work of sending the packet.

3 marks sock_alloc_send_pskb(), which allocates a buffer for holding the packet that’s being sent. (skb
refers to sk_buff, the socket buffer that Linux uses everywhere in the network stack.)

4 marks the matching function consume_skb(), which releases and frees the sk_buff. I point this out to
show how much of the time spent transmitting packets is actually spent just allocating and freeing buffers.
This will be important later on.

Figure 5. Performance profile of Masscan with libpcap.

Figure 6. Performance profile of Masscan with PF_RING.

67



• It builds the packet, filling in the destination
IP/port, and calculating the checksum

• It then transmits it via the PF_RING user-mode
driver

At the same time, the receive_thread() is re-
ceiving packets. While the transmit thread doesn’t
enter the kernel, the receive thread will, spending
most of its time waiting for incoming packets via
the poll() system call. Masscan transmits at high
rates, but receives responses at fairly low rates.

To the left, in two separate chunks, we see the
time spent in the PF_RING user-mode driver. Here
perf is confused: about 1/3 of this time is spent in
the receive thread, and the other 2/3 in the transmit
thread.

About ten to fifteen percent of the time is taken
up inside PF_RING user-mode driver or an overhead
40 clock cycles per packet.

Nearly half of the time is taken up by sip-
hash24(), for calculating the SYN cookie. Mass-
can doesn’t remember which packets it’s sent, but
instead uses the SYN cookie technique to verify
whether a response is valid. This is done by setting
the Initial Sequence Number of the SYN packet to
a hash of the IP addresses, port numbers, and a se-
cret. By using a cryptographically strong hash, like
siphash, it assures that somebody receiving pack-
ets cannot figure out that secret and spoof responses
back to Masscan. Siphash is normally considered a
fast hash, and the fact that it’s taking so much time
demonstrates how little the rest of the code is doing.

The build packet takes ten percent of the time.
Most of the this is spent needlessly calculating the
checksum. This can be offloaded onto the hardware,
saving a bit of time.

The most important point here is demonstrat-
ing that the transmit thread doesn’t hit the kernel.
The receive thread does, because it needs to stop
and wait, but the transmit thread doesn’t. PF_-
RING’s custom user-mode driver simply reads and
writes directly into the network hardware registers,
and manages the transmit and receive ring buffers,
all memory-mapped from kernel into user mode.

The benefits of this approach are that there is no
system call overhead, and there is no needless copy-
ing of packets. But the biggest performance gain
comes from not allocating and then freeing packets.
As we see from the previous profile, that’s where the
kernel spends much of its time.

The reason for this is that the network card is

normally a shared resource. While Masscan is trans-
mitting, the system may also be running a webserver
on that card, and supporting SSH login sessions.
Sharing these resources ultimately means allocating
and freeing sk_buffs whenever packets are sent or
received.

PF_RING, however, wrests control of the network
card away from the kernel, and gives it wholly to
Masscan. No other application can use the network
card while Masscan is running. If you want to SSH
into the box in order to run �masscan, you’ll need a
second network card.

If Masscan takes 400 clock cycles per packet, how
many CPU instructions is that? Perf can answer
that question, with a call like perf -a sleep 100.
It gives us an IPC (instructions per clock cycle) ra-
tion of 2.43, which means around 1000 instructions
per packet for Masscan.

To reiterate, the point of all this profiling is this:
when running with libpcap, most of the time is
spent in the kernel. With PF_RING, we can see from
the profile graphs that the kernel is completely by-
passed on the transmit thread. The overhead goes
from most of the CPU to very little of the CPU.
Any performance issues are in the Masscan, such
as choosing a slow cryptographic hash algorithm
instead of a faster, non-cryptographic algorithm,
rather than in the kernel!

How to Replicate This Profiling
Here is brief guide to reproducing this article’s pro-
file flamegraphs. This would be useful to compare
against other network projects, other drivers, or for
playing with Masscan to tune its speed. You may
skip to the next section on a first reading, but if,
like me, you never trusted a graph you could not
reproduce yourself, read on!

Get two computers. You want one to transmit,
and another to receive. Almost any Intel desktop
will do.

Buy two Intel 10gig Ethernet adapters: one to
transmit, and the other to receive and verify the
packets have been received. The adapters cost $200
to $300 each. They have to be the Intel chipset,
other chipsets won’t work.

Install Ubuntu 16.04, as it’s the easiest system
to get perf running on. I had trouble with other
systems.

The perf program gets confused by idle threads.
Therefore, for profiling, I rebooted the Linux
computer with maxcpus=1 on the boot command
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line. I did this by editing /etc/default/grub,
adding maxcpus=1 to the line GRUB_CMDLINE_-
LINUX_DEFAULT, then running update-grub to save
the configuration.

To install perf, Masscan, and FlameGraph.

1 apt−get i n s t a l l l inux−t oo l s−common \
l inux−t oo l s −‘uname −r ‘ g i t \

3 bui ld−e s s e n t i a l l ibpcap−dev

5 g i t c l one https : // github . com/brendangregg /
FlameGraph

# Get masscan from source and bu i l d i t :
7 g i t c l one https : // github . com/

robertdavidgraham/masscan
cd masscan

9 make
make t e s t

11 ln bin /masscan / usr / l o c a l / sb in /masscan
cd . .

13 # Get PF_RING from source and bu i l d i t :
g i t c l one https : // github . com/ntop/PF_RING

15 cd PF_RING
make

17 cd ke rne l
make i n s t a l l

19 insmod pf_ring . ko
cd . . / use r land / t o o l s

21 make i n s t a l l
cd . . / d r i v e r s / i n t e l / ixgbe / ixgbe −5.0/ s r c

23 make
sh load_dr iver s . sh

25 cd . . / . . / . . / . . / . . / . .

The pf_ring.ko module should load automat-
ically on reboot, but you’ll need to rerun load_-
drivers.sh every time. If I ran this in production,
rather than just for testing, I’d probably figure out
the best way to auto-load it.

You can set all the parameters for Masscan on
the command line, but it’s easier to create a default
configuration file in /etc/masscan/masscan.conf:

1 source−ip = 00 : 1 1 : 2 2 : 3 3 : 4 4 : 5 5
adapter−mac = 00 : 2 2 : 2 2 : 2 2 : 2 2 : 2 2

3 router−mac = 00 : 1 1 : 2 2 : 3 3 : 4 4 : 5 5
inc lude = 0 .0 . 0 . 0 −255 . 255 . 255 . 255

5 exc lude = 255 . 255 . 255 . 255
port = 0−65535

Since there is no network stack attached to the
network adapter, we have to fake one of our own.
Therefore, we have to configure that source IP and
MAC address, as well as the destination router MAC
address. It’s really important that you have a fake
router MAC address, in case you accidentally cross-
connect your 10gig hub with your home network and

end up blasting your Internet connection. (This has
happened to me, and it’s no fun.)

Now we run Masscan. For the first run, we’ll
do the normal adapter without PF_RING. Pick the
correct network adapter for your machine (on my
machine, it’s enp2s03.)

masscan −e enp2s0f1 −r a t e 100000000

In another window, run the following. This will
grab 99 samples per second for 60 seconds while
Masscan is running.

1 cd FlameGraph
pe r f r ecord −F 99 −a −g −− s l e e p 60

3 pe r f s c r i p t | . / s t a ck co l l ap s e−pe r f . p l > out .
per f−f o l d ed

. / f lamegraph . p l out . per f−f o l d ed > masscan−
pcap . svg

You’ll have to wait 60 seconds, then it’ll produce
the file masscan-pcap.svg with the FlameGraph
pictures.

Now, repeat the process to produce
masscan-pfring.svg with the following command.
It’s the same as the original Masscan run, except
that we’ve prefixed the adapter name with zc:.
This disconnects any kernel network stack you might
have on the adapter and instead uses the user-mode
driver in the libpfring.so library that Masscan
will load:

masscan −e zc : enp2s0f1 −r a t e 100000000

At this point, you should have two FlameGraphs.
Load these in any web browser, and you can drill
down into the specific functions.

Playing with perf options, or using something
else like dtrace, might produce better results. The
results I get match my expectations, so I haven’t
played with them enough to test their accuracy. I
challenge you to do this, though—for reproducibil-
ity is the heart and soul of science. Trust no one;
reproduce everything you can.

Now back to our regular programming.

How Ethernet Drivers Work

If you run lspci -v for the Ethernet cards, you’ll
see something like the following.
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1 02 : 00 . 1 Ethernet c o n t r o l l e r : I n t e l Corporation 82599 10
Gigabit TN Network Connection ( rev 01)

Subsystem : I n t e l Corporation 82599 10 Gigabit
TN Network connect ion

3 Flags : bus master , f a s t devse l , l a t ency 0 , IRQ
17

Memory at df200000 (64−bit , non−pr e f e t chab l e ) [
s i z e=2M]

5 I /O ports at e000 [ s i z e =32]
Memory at df600000 (64−bit , non−pr e f e t chab l e ) [

s i z e=16K]
7 Capab i l i t i e s : <acce s s denied>

Kernel d r i v e r in use : ixgbe
9 Kernel modules : ixgbe

There are five parts to notice.

• There is a small 16k memory region. This
is where the driver controls the card, using
memory-mapped I/O, by reading and writing
these memory addresses. There’s no actual
memory here—these are registers on the card.
Writes to these registers cause the card to do
something, reads from this memory check sta-
tus information.

• There is a small amount of I/O ports ad-
dress space reserved. It points to the same
registers mapped in memory. Only Intel x86
processors support a second I/O space along
with memory space, using the inb/outb in-
structions to read and write in this space.
Other CPUs (like ARM) don’t, so most de-
vices also support memory-mapped I/O to
these same registers. For user-mode drivers,
we use memory-mapped I/O instead of x86’s
“native” inb/outb I/O instructions.

• There is a large 2-megabyte memory region.
This memory is used to store descriptors
(pointers) to packet buffers in main memory.
The driver allocates memory, then writes (via
memory-mapped I/O) the descriptors to this
region.

• The network chip uses Bus Master DMA.
When packets arrive, the network chip chooses
the next free descriptor and DMAs the packet
across the PCIe bus into that memory, then
marks the status of the descriptor as used.

• The network chip can (optionally) use inter-
rupts (IRQs) to inform the driver that pack-
ets have arrived, or that transmits are com-
plete. Interrupt handlers must be in kernel
space, but the Linux user-mode I/O (UIO)
framework allows you to connect interrupts to
file handles, so that the user-mode code can

call the normal poll() or select() to wait on
them. In Masscan, the receive thread uses
this, but the interrupts aren’t used on the
transmit thread.

There is also some confusion about IOMMU. It
doesn’t control the memory mapped I/O—that goes
through the normal MMU, because it’s still the CPU
that’s reading and writing memory. Instead, the
IOMMU controls the DMA transfers, when a PCIe
device is reading or writing memory.

Packet buffers/descriptors are arranged in a ring
buffer. When a packet arrives, the hardware picks
the next free descriptor at the head of the ring, then
moves the head forward. If the head goes past the
end of the array of descriptors, it wraps around at
the beginning. The software processes packets at
the tail of the ring, likewise moving the tail forward
for each packet it frees. If the head catches up with
the tail, and there are no free descriptors left, then
the network card must drop the packet. If the tail
catches up with the head, then the software is done
processing all the packets, and must either wait for
the next interrupt, or if interrupts are disabled, must
keep polling to see if any new packets have arrived.

Transmits work the same way. The software
writes descriptors at the head, pointing to packets it
wants to send, moving the head forward. The hard-
ware grabs the packets at the tail, transmits them,
then moves the tail forward. It then generates an
interrupt to notify the software that it can free the
packet, or, if interrupts are disabled, the software
will have to poll for this information.

In Linux, when a packet arrives, it’s removed
from the ring buffer. Some drivers allocate an sk_-
buff, then copy the packet from the ring buffer into
the sk_buff. Other drivers allocate an sk_buff,
and swap it with the previous sk_buff that holds
the packet.

Either way, the sk_buff holding the packet is
now forwarded up through the network stack, un-
til the user-mode app does a recv()/read() of the
data from the socket. At this point, the sk_buff is
freed.

A user-mode driver, however, just leaves the
packet in place, and handles it right there. An
IDS, for example, will run all of its deep-packet-
inspection right on the packet in the ring buffer.

Logically, a user-mode driver consists of two
steps. The first is to grab the pointer to the next
available packet in the ring buffer. Then it processes
the packet, in place. The next step is to release the
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packet. (Memory-mapped I/O to the network card
to move the tail pointer forward.)

In practice, when you look at APIs like PF_RING,
it’s done in a single step. The code grabs a pointer
to the next available packet while simultaneously re-
leasing the previous packet. Thus, the code sits in
a tight loop calling pfring_recv() without worry-
ing about the details. The pfring_recv() function
returns the pointer to the packet in the ring buffer,
the length, and the timestamp.

In theory, there’s not a lot of instructions in-
volved in pfring_recv(). Ring buffers are very ef-
ficient, not even requiring locks, which would be ex-
pensive across the PCIe bus. However, I/O has weak
memory consistency. This means that although the
code writes first A then B, sometimes the CPU may
reorder the writes across the PCI bus to write first
B then A. This can confuse the network hardware,
which expects first A then B. To fix this, the driver
needs memory fences to enforce the order. Such a
fence can cost 30 clock cycles.

Let’s talk sk_buffs for the moment. Histori-
cally, as a packet passed from layer to layer through
the TCP/IP stack, a copy would be made of the
packet. The newer designs have focused on “zero-
copy,” where instead a pointer to the sk_buff is
forwarded to each layer. For drivers that allocate an
sk_buff to begin with, the kernel will never make
a copy of the packet. It’ll allocate a new sk_buff
and swap pointers, rewriting the descriptor to point
to the newly allocated buffer. It’ll then pass the
received packet’s sk_buff pointer up through the
network stack.

As we saw in the FlameGraphs, allocating sk_-
buffs is expensive!

Allocating sk_buffs (or copying packets) is nec-
essary in the Linux stack because the network card
is a shared resource. If you left the packets in the
ring buffer, then one slow app that leaves the packet
there would eventually cause the ring buffer to fill
up and halt, affecting all the other applications on
the system. Thus, when the network card is shared,
packets need to be removed from the ring. When
the network card is a dedicated resource, packets
can just stay in the ring buffer, and be processed in
place.

Let’s talk zero-copy for a moment. The Linux
kernel went through a period where it obsessively
removed all copying of packets, but there’s still one
copy left: the point where the user-mode applica-

tion calls recv() or read() to read the packet’s
contents. At that point, a copy is made from kernel-
mode memory into user-mode memory. So the term
zero-copy is, in fact, a lie whenever the kernel is
involved!

With user-mode drivers, however, zero-copy is
the truth. The code processes the packet right in
the ring buffer. In an application like a firewall, the
adapter would DMA the packet in on receive, then
out on transmit. The CPU would read from mem-
ory the packet headers to analyze them, but never
read the payload. The payload will pass through the
system completely untouched by the CPU.

Let’s talk about interrupts for a moment. Back
in the day, an interrupt was generated per packet.
Indeed, at one time, two interrupts could be gener-
ated, one after the TCP/IP headers were received,
so processing could start immediately, and another
after the rest of the packet had been received.

The value of interrupts is that they provide low
latency, important for devices that forward pack-
ets (firewalls, IPS, routers), or for fast responses
to packets. The cost of interrupts, though, is that
they cause large CPU overhead. When an inter-
rupts happens, it forces execution of an interrupt
handler. Even medium rates of packets can over-
whelm the system with interrupts, so that as soon
as the system leaves an interrupt handler, it immedi-
ately enters another one. In such cases, the system
has essentially locked up. The mouse won’t even
move on the screen until the packet rate decreases,
after which point the system will behave normally.32

The obvious solution to this is to turn off inter-
rupts from the network card. Instead, the software
can sit in a tight loop and poll() to see if new pack-
ets arrive. Another strategy is to program the timer
chip for frequent interrupts. The card can bounce
back and forth among these strategies, depending on
the current network speed. Polling consumes a lot of
CPU time. Using delayed timer interrupts increases
latency.

Those writing custom drivers have used these
strategies since the 1980s. Around 2006, Linux
drivers started doing the same, using the NAPI API
to enable polling when packets arrived at high speed.
Around that time, network hardware also improved,
adding support for coalescing interrupts, so that it
generated fewer at high speed, generating only one
interrupt after many packets have arrived.

In the graphs, you saw that the libpcap had
32If caught during the late stages of booting, the system might not even boot up until the packet flow eases up.
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some small overhead with interrupts, but it’s not
overwhelming, because NAPI interrupt moderation
kicks in. Using pfring gets rid of this overhead.

Let’s talk system call overhead. A recent paper
by Livio Soares and Michael Stumm does a good job
measuring it.33 The basic cost of entering or leav-
ing kernel space is around 150 clock cycles. This
alone takes more time than all the user-mode driver
processing done by PF_RING, according to our mea-
surements.

There are further expenses to the system call. It
has to walk through a bunch of kernel data struc-
tures. This then pollutes the caches on the chip.
According to the Soares paper, it evicts about half
the data in the L1 cache. This will cause data access
to go from 4 clock cycles (often masked by the out-
of-order processing of the CPU) to 12 clocks in L2
cache, or 30 clocks in L3 cache. The effective cost
can thus equal hundreds of extra clock cycles.

On the other hand, the cost can easily be amor-
tized by doing multiple packet reads or writes per
system call. Linux has a recvmsg() system call that
does this, to good effect.

Combining all this together, we see why a user-
mode driver has such big gains (or conversely, why
the kernel has such big losses): (a) it avoids the al-
location/deallocation of memory; (b) it avoids any
memory copies; (c) it avoids system call overhead,
and (d) it avoids interrupts.

Some History of Ethernet Drivers

Since the dawn of networking there have been peo-
ple dissatisfied with the standard Ethernet drivers
who have written their own.

An example were packet sniffers, like the Net-
work General “Sniffer” product. Back in the day,
they wrote custom drivers so they could capture at
“wire speed” on an 80286 microprocessor. The ma-
jor feature was simply disabling interrupts. Portable
MS-DOS computers were used as packet sniffers be-
cause “real” computers like SPARCstations running
Solaris couldn’t handle high traffic rates.

Early drivers were hard, because hardware
sucked. There was no bus master DMA in the early
ISA bus days, so for DMA, you had to use the moth-
erboard’s DMA controller. Only, it wasn’t really
that fast. So instead, drivers used the Programmed
I/O (PIO) mode to read packets from the adapter.

There was also the problem of bus bandwidth.

Early PCI supported 1 Gbps in theory (32 bits times
33 MHz), but various overheads made that impracti-
cal. It wasn’t until wider PCI (64-bit) or/and faster
PCI (66 MHz) that true wirespeed gigabit Ethernet
was possible.

Also, with PCI, all the slots were shared on the
same bus, so other devices impacted yours. This was
especially difficult when building firewalls, routers,
or IPS applications that needed to both transmit
and receive. Luckily, motherboards started support-
ing multiple independent PCI buses. Still, PCI was
still single-plexed, meaning it couldn’t transfer in
both directions at the same time.

Virtually all these concerns have gone away now.
Even a single lane of PCIe 1.0 is 2 Gbps, bidirec-
tional, with more than enough bandwidth to handle
sending and receiving at full 1 Gbps.

The early Intel 1 Gbps card had only 256 descrip-
tors. Timing was tight enough that at full band-
width; there wasn’t enough time to process packets
before the ring buffer would fill up. With BlackICE,
we solved this by allocating an effective ring buffer
of several thousand descriptors. Then, when pack-
ets arrived, we replaced the existing descriptors with
new descriptors from the preallocated set. We used
two CPUs, one dedicated to running the user-mode
driver doing this, and another reading and process-
ing packets from the large virtual ring buffer. I men-
tion this trick because, at the time, Intel engineers
told us it wasn’t possible to capture packets at wire-
speed, and we were able to prove them wrong.

Historically, and often today, the reality is that
few hardware vendors test their hardware at max-
imum speed. Since operating systems can’t handle
it, they don’t test for it. That makes writing drivers
for practical hardware much harder than it would
seem in theory, as driver writers have to overcome
bugs in the hardware.

Today, custom drivers are common. Back in the
day, they were black magic.

Core Concept

In 1998, I created BlackICE, an IDS/IPS using a
custom driver. A frequent question at the time was
why we didn’t write it on Linux, or even BSD, which
everyone knew was faster. In particular, some pa-
pers at the time “proved” that the BSD networking
was the fastest.

33unzip pocorgtfo15.pdf flexsc-osdi10.pdf
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ICEBlack
defender

This bothered me because I was unable to ex-
plain the core concept. If we are completely bypass-
ing the operating system, then the operating sys-
tem doesn’t matter. As the graphs show, Masscan
spends no time in the operating system. Given the
same version of GCC, and the same hardware, it’ll
run at nearly identical speed, regardless if the op-
erating system is Windows, Linux, or BSD. It’s like
any other CPU-bound (rather than OS-bound) task.

Yet, people couldn’t appreciate this. They knew
in their hearts that some operating system was bet-
ter, and couldn’t see the concept of bypassing it.

BlackICE used poll mode, instead of interrupts,
so it didn’t lock up under high packet rates. Now,
with NAPI, and poll-mode drivers like PF_RING,
it’s something everyone can play with and under-
stand. Back then, it was some weird black magic
that people refused to believe actually worked. My
11-inch laptop computer happened to use 3Com’s
3c905 chip, the only 100 Mbps card we wrote a driver
for. Even after demonstrating it handling the maxi-
mum rate of 148,800 packets-per-second, people re-
fused to believe it worked. There’s a Defcon video
where the presenter claims that this is impossible,
that the notebook would literally melt under such
a load. Nowadays, cheap notebooks easily handle
max 1 Gbps speeds (1,488,000 packets-per-second)
using things like PF_RING.

In 2003, Gartner came out with a report that
software IDS was dead, because it couldn’t han-
dle line-rate gigabit Ethernet, and that “hardware”
was needed. That was based on experience with
Snort, which had no custom drivers available at the
time. Even when customers explained to Gartner
they were successfully using our product at line rate,
they refused to believe.

More interesting was the customers who tested
our software product side-by-side with “hardware”
competitors in the lab, and found our product faster.
They still bought the competitors’, because of FUD.
Nobody got fired for buying a hardware product
that turned out to be slow.

Even today, discussions of these drivers still get
questions like “What about Endace?” Endace builds
custom cards with FPGAs to accelerate processing.
This doesn’t apply. The overhead for Masscan using

PF_RING is nearly zero, and would have the identi-
cal overhead working with an Endace card, also near
zero. The FPGA doesn’t reach outside the card and
somehow make Masscan’s code faster.

Yes, Endace does have some advantages. You
can push filters to card, so that fewer packets ar-
rive in a system. This is needed in some networks.
However, most people use Endace for things that
PF_RING would solve just fine, because they believe
in the power of hardware.

Finally, the same sorts of prejudices exist with
kernel code. Programmers are indoctrinated to be-
lieve code runs faster in the kernel, which is not true.
The reason you push stuff into the kernel is to avoid
the kernel/user transition. There’s otherwise no in-
herent advantage. Pushing things like the driver to
user mode is just doing the same thing, avoiding the
kernel/user transition. Indeed, that’s all micoroker-
nels are, operating systems that aggressively push
subsystems outside the kernel.

Several Drivers to Choose From

Masscan uses PF_RING because of compile
dependencies—there is no actual dependency. You
compile Masscan without any dependency on PF_-
RING, yet that compiled code will go hunt for the
pfring.so library and dynamically load it. Thus,
in the replication instructions, I have you compile
Masscan first, and PF_RING second.

But there are two other options of note.
Intel has a system called DPDK, the Data-Plane

Development kit. It contains not only a user-mode
driver similar to PF_RING, but a whole toolkit to
solve other problems, like multi-CPU synchroniza-
tion and multi-socket NUMA memory handling. It’s
a real awesome toolkit. However, it’s also an enor-
mous dependency for code. That’s why Masscan
uses PF_RING—it’s an optional feature that most
users will never see. Had I used DPDK, I would’ve
forced users into dependency hell trying to build a
massive toolkit for my little application.

Another option is netmap. This is a kernel-mode
driver that is otherwise identical to the user-mode
stuff. It memory maps the packet buffers in user
space, so it’s truly zero copy. It also disconnects the
driver from the network stack, and gives exclusive
access to the application, so there’s no allocation
and freeing of sk_buffs. It batches multiple reads
and writes with a single system call, amortizing the
cost of system calls across many packets.
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The great thing about netmap is that it’s built
into the latest Linux kernels. Assuming you have
Intel Ethernet, or even a Realtek Gigabit card, it
should work immediately with no special software.
I haven’t gotten around to adding this to Masscan,
but the overhead should be comparable to PF_-
RING—despite being tainted with evil kernel-mode
code.

Some notes on IDS design

One place to use these “user-mode no-interrupt zero-
copy ring-buffer” drivers is with a network intrusion
detection system, or even an inline version called
and intrusion prevention system.

None of the existing open-source IDS projects
(Snort, Bro, Suricata) are really designed for speed.
They were written using libpcap where, at high
speed, the kernel consumed most of the CPU power.
As a consequence, there were only so much perfor-
mance improvements that could be made before it
wasn’t worth it. Optimizations that made the soft-
ware infinitely fast would still not even double the
practical performance of the IDS, because the kernel
would be eating up all the time.

But, with near zero overhead in the drivers, some
interesting optimizations become worthwhile.

One problem with the Snort IDS is how it does
TCP reassembly. It must copy packets into the same
buffer in order to perform regex searches. This adds
two things which we know to be bad: memory allo-
cations and memory copies.

An alternative is to not do this, to neither do
regex as the basis of signatures, nor do reassembly.

This approach is demonstrated in Masscan in
several places. Masscan can establish a TCP connec-
tion and interact with the service. When it needs to
search for patterns, instead of a regex it uses an Aho-
Corasick (AC) pattern matcher. Whereas a normal
regex needs to have a complete buffer, so that it can
do back tracking, an AC pattern matcher does not.
It accepts input a sequence of fragments, saving the
state of the search at the end of one fragment and
continuing at the start of the next fragment.

This has the same practical ability to search a
TCP stream, but without the need to “reassemble”
fragments, allocate memory, or do memory copies.

In abstract computer science terms, this is the
tradeoff between NFAs (non-deterministic finite au-
tomata) which can consume a lot of CPU power, and

DFAs (deterministic finite automata), which con-
sume a fixed amount of CPU power, but at the
expense of using a lot of memory for the tables it
builds.

Another thing you’ll see in Masscan is protocol
decoders based on state machines. Again, instead
of reassembling packets, the protocol decoder saves
state at the end of one fragment and continues with
that state at the start of the next. An example of
this is the X.509 parser, proto-x509.c. The unit
test calls this two ways, one with an entire certificate
to be parsed, and one where the bytes are processed
one at a time, as if they had arrived in fragments
over TCP.

Such state-machine parsers are really weird, but
by avoiding memory allocations and copies, they be-
come really fast at high network speeds. It’s a diffi-
cult optimization to make the code that would add
little value when using kernel mode drivers, but be-
comes an important way of building an IDS if using
these zero-overhead drivers.

– — — – — — — — – — –
The kernel is a lie.

74



 

This Net Is Your Net
Based on the song “This Land is Your Land” by Woody Guthrie

A Bad BIOS analog production for acoustic guitar, violin, and piano

Music by Don A. Bailey, Lyrics by Don A. Bailey and Alex Kreilein
Arranged by Evan A. Sultanik
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15:09 Detecting Emulation with MIPS16 Delay Slots
by Ryan Speers and Travis Goodspeed

with the kindest of thanks to Thorsten Haas.

Howdy y’all,
Let’s begin with a joke that I once heard at a con-

ference: David Patterson and John Hennessy walk
into a bar. Everyone gathers to listen to the two
heroes who built legendary machines. The entire bar
spends the night multiplying fractions, and then ev-
eryone has that terrible hangover you get when you
realize you had no fun and learned nothing new, even
though your night started out so promising.

But let’s tell the joke differently: Patterson and
Hennessy walk into a bar in another town, but this
time, Greg Peterson is behind the bar. The two of
them begin a long-winded story about weighted aver-
ages, lashing out at “RISC-deniers” who aren’t even
in the room. Just as folks begin to get bored, and
begin to sip their drinks too quickly out of nervous-
ness, Peterson jumps in and saves the day. Because
he knows that these fine folks build real machines
that really shipped, he redirects the conversation to
war stories and practical considerations.

Patterson tells how the two-stage pipeline in the
RISC 1 chip was the first design with a branch delay
slot, as there’s no point in throwing away the staged
instruction that has already finished execution. Hen-
nessy jumps in with a tale of dual instruction sets
on MIPS, allowing denser code without abandoning
the spirit of the RISC faith. Then Peterson, the
bartender, serves up a number of Xilinx devkits to
bar patrons, who begin collaborating on a five-stage
pipeline design of their own, with advice on spe-
cific design choices from David and John. The next
morning, they’ve built a working CPU and suffered
no hangovers.

If your Computer Architecture class was more
like the former than the latter, I hope that this brief
article will show you some of the joy of this fine
subject.

In PoC‖GTFO 6:6, Craig Heffner discussed a va-
riety of methods for detecting Qemu emulation of
MIPS hardware. We’ll be discussing one more way
to detect emulation, but we’ll be using the MIPS16
instruction set and a clever trick of delay slots to
detect the emulation.

We wanted to craft a capability that is (a) able
to differentiate hardware from an emulation environ-
ment, and also (b) able to confuse static analysis.
We picked used standard tools: Qemu as an emula-
tion environment and IDA Pro as a disassembler.34

The first criterion leads us to want something
that both: (a) works in userland, and (b) is not
trivial for an emulator developer to patch. Mov-
ing to userland meant that hardware registry inspec-
tion, as discussed in Section 6.1 of Heffner’s article,
would not work. Similarly, the technique of reading
cpuinfo in Section 6.2 would be easily patchable,
as Craig noted. Here, we instead seek a capability
more similar to Section 6.3, where cache incoherency
is exploited to differentiate real hardware and Qemu.

MIPS16e

SSH’ing to a newly acquired MIPS box, we find the
same nifty line of cpuinfo that struck our fancy in
Craig’s article. MIPS16 is an extension to the clas-
sic MIPS instruction set that fills the same niche as
Thumb2 does on ARM. The instructions word is 16
bits wide, a subset of the full register set is directly
available, and a core tenet of RISC is violated: some
instructions are more than one word long.

1 $ cat /proc / cpu in fo
system type : BCM7358A1 STB plat form

3 cpu model : Broadcom BMIPS3300 V3. 2
cpu MHz : 751 .534

5 t l b_en t r i e s : 32
i s a : mips1 mips2 mips32r1

7 ASEs implemented : mips16

Just like ARM, this alternate instruction set is
used whenever the least significant bit of the pro-
gram counter is set. Function pointers work as ex-
pected between the two instruction sets, and the
calling conventions are compatible.

34We will happily buy the drinks in celebration of Radare2 issue 1917 and Capstone issue 241 being closed.
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Figure 7. MIPS 74Kc Pipeline

Despite careful work to maintain compatibility
between MIPS16 and MIPS32, there are inevitable
differences. MIPS16 only has direct access to eight
registers, rather than the 32 of its larger cousin.

CPU Pipelines
In Hennessy and Patterson’s books, a five-stage
pipeline is described and hammered into the poor
reader’s head. This classic RISC pipeline isn’t what
you’ll find in modern chips, but it’s a lot easier to
keep in mind while working on them. The stages
in order are Instruction Fetch (IF), Instruction De-
code (ID), Execute (EX), Memory Access (MEM),
and Write Back (WB).

Each pipeline stage can only hold one instruction
at a time, but by passing the instructions through
as a queue, multiple instructions can exist in dif-
ferent stages at the same time. When a branch is
mis-predicted, the pipeline will be “flushed,” which
is to say that the partially-completed instructions
from the incorrectly guessed branch are blown to the
wind and replaced with harmless NOP instructions,
which are sometimes called “bubbles.”

Bubbles are also one way to avoid “data haz-
ards,” which are dependencies between instructions
that run at the same time. For example, if you were
to use a value just after loading it, the CPU would

have to either insert a bubble to delay the second
instruction until the value is ready or it would “for-
ward” the register result.35

The MIPS 74Kc on one of our target machines
has 14 or 15 pipeline stages, depending upon how
you count, plus three additional stages for MIPS16e
instruction decoding.36 These stages are quite well
documented, but to ease the explanation a bit, we
won’t bore you with the details of exactly what hap-
pens where. The stages themselves are shown in
Figure 7, helpfully illustrated by Ange Albertini.

Extended (Wide) Instructions

We mentioned earlier that MIPS16 instructions are
usually just one instruction word, but that some-
times they are two. That’s a bit vague and hand-
wavy, so we’d like to clear that up now with a con-
crete example.

There is an Extend Immediate instruction which
allows us to enlarge the immediate field of another
MIPS16 instruction, as its immediate field is smaller
than that in the equivalent 32-bit MIPS instruction.
This instruction is itself two bytes, and is placed
directly before the instruction which it will extend,
making the “extended instruction” a total of four
bytes.

35Very early MIPS machines made the hazard the compiler’s responsibility, in what was called the “load delay slot.” It is
separate from the “branch delay slot” that we’ll discuss in a later section, and is no longer found in modern MIPS designs.

36unzip pocorgtfo15.pdf mips74kc.pdf
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For example, the opcode for adding an immedi-
ate value of 1 to r2 is 0x4a01. (r2 is the register for
both the first argument to a function and its return
value.) Because MIPS16 only encodes room for five
immediate bits in this instruction, it allows for an
extension word before the opcode to include extra
bits. These can of course be zero, so 0xF000 0x4a01
also means addi r2, 1.

Some combinations are illegal. For example, ex-
tending the immediate bits of a NOP isn’t quite
meaningful, so trying to execute 0xF008 0x6500
(Extended Immediate NOP) will trigger a bus er-
ror and the process will crash.

The Extended Shift instruction shown along
with a regular Shift in Figure 8. Now how the prefix
word changes the meaning of the subsequent instruc-
tion word.

However, thinking of these two words as a single
instruction isn’t quite right, as we’ll soon see.

Delay Slots

Unlike ARM and Thumb, but like MIPS32 and
SPARC, MIPS16 has a branch delay slot. The way
most folks think of this, and the way that it is first
explained by Patterson and Hennessy,37 is that the
very next instruction after a branch is executed re-
gardless of whether the branch is taken.

Sometimes this is hidden by an assembler, but
a disassembler will usually show the instructions in
their physical order. IDA Pro helpfully groups the
delay-slot instruction into the proper block, so in
graph view you won’t mistake it for being condi-
tionally executed.

Extended Instructions in a Delay Slot

So what happens if we put a multi-word instruction
into the delay slot? IDA Pro, being first written for
X86, assumes that X86 rules apply and the whole
chunk is one instruction. Qemu agrees, and a quick

test of the following code reveals that the full in-
struction is executed in the delay slot.

We can test this as we see that on both real hard-
ware and Qemu, extending an instruction like a NOP
that shouldn’t be extended will trigger a bus error.
However, when we put this combination after a re-
turn, it will only crash Qemu. In this case in hard-
ware, only the extension word was fetched, which
didn’t cause an issue.

1 0xE820 //Return .
0xF008 //Extension word .

3 0x6500 //NOP, w i l l crash i f extended .

This is a known issue with the MIPS16e instruc-
tion set.38 To quote page 30, “There is only one
restriction on the location of extensible instructions:
They may not be placed in jump delay slots. Doing
so causes UNPREDICTABLE results.”

Making Something Useful

We can now crash an emulator while allowing hard-
ware to execute, but let’s improve this technique into
something that can be used effectively for evasion.
We’ll replace the NOP which caused the crash when
extended with an instruction which is intended to
be extended, specifically an add immediate, addi.

1 0x6740 // F i r s t we zero r2 , the
// return va lue .

3 0xE820 // j r $ra (Return )
0xF000 // Extended immediate o f 0 .

5 0x4A01 // Add immediate 1 to r2 .
// ( only executed in Qemu)

If we take that shellcode and view the IDA disas-
sembly for it, you will see that, as above, IDA groups
the delay-slot instruction into the function block so
it looks like one is added to the return value. See
Figure 9, being careful to remember that $v0 means
r2.

37Page 444 of Computer Organization and Design, 2nd ed.
38unzip pocorgtfo15.pdf mips16e-isa.pdf

a

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFT rx ry sa f

a 0 0 0 0 0 SHIFT rx ry 0 0 0 f

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND sa 4:0 s5

Figure 8. MIPS16 Regular and Extended Shift Instructions
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But hang on a minute, that delay slot holds two
instruction words, and as we learned earlier, these
can be thought of as separate instructions!

In fact, IDA only shows the instruction bytes on
the left if you explicitly request a number of bytes
from the assembly be shown. Without these be-
ing shown, a reverse engineer might forget that the
program assembled a double-length instruction and
thus that this behavior will occur.

This shows how we can confuse static analysis
tools, which disassemble without taking into account
this special case.

Let’s now look at what happens when we take
the above shellcode and execute it as a function from
a program. We print the return value from the func-
tion in the below sample output.

1 int exec16 ( int (∗ f p t r 16 ) ( int ) ,
int verbose ) {

3 uint32_t r e s ;
uint8_t∗ bytes ;

5 int (∗ f unc t i onPtr ) ( int ) ;
func t i onPtr=(void ∗) ( ( ( int ) f p t r 16 ) | 1 ) ;

7 return f unc t i onPtr (0 xdeadbeef ) ;
}

9
uint16_t amiemulated16 [ ]={

11 0x6740 , // F i r s t we zero r2 , the
// return va lue .

13 0xE820 , // j r $ra (Return )
0xF000 , // Extended immediate o f 0 .

15 0x4A01 // Add immediate 1 to r2 .
// ( only executed in Qemu)

17 } ;

19 int main ( ) {
p r i n t f ( " I am running %s . \ n" ,

21 exec16 ( ( void ∗) amiemulated16 , 0)
? " in Qemu"

23 : "on r e a l hardware" ) ;
return 0 ;

25 }

We’ve discussed how IDA sees the extended ad-
dition as a single instruction, when in fact they are
two separate MIPS instructions. But how is this
handled in an emulator versus real MIPS hardware?

On the real hardware, when the return instruc-
tion is processed, the next instruction in the pipeline
is 0xF000 (the extension instruction) and this is ex-
ecuted in the branch delay slot. That instruction,
however, becomes a NOP in hardware.

ROM:0000 . s e t mips16
2 ROM:0000 # ====== SUBROUTINE ======
ROM:0000 amiemulated :

4 ROM:0000 67 40 move $v0 , $zero # Clear re turn value to zero .
ROM:0002 E8 20 j r $ra # Return

6 ROM:0004 F0 00 4A 01 addiu $v0 , 1 # Adds 1 to re turn value in Qemu.
ROM:0004 # End o f func t i on amiemulated # This becomes a NOP on r e a l hardware .

Figure 9. MIPS16 Machine Code abusing the Delay Slot
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1 ~$ uname −a
Linux ta r g e t 3 . 1 2 . 1 #1 mips GNU/Linux

3 ~$ . / h e l l o
I am running on r e a l hardware .

The reason this detection works, we hypothesize,
is because Qemu doesn’t actually have a pipeline,
and thus it is emulated by knowing that it should
run the instruction following a branch, to “correctly”
handle the branch-delay slot. When it reads that
next instruction, it reads the two instructions that
it sees as a single extended instruction, instead of
just reading the extension.

~$ mips−l inux−gnu−gcc −s t a t i c −std=gnu99 \
2 h e l l o . c −o h e l l o

~$ qemu−mips −L /usr /mips−l inux−gnu h e l l o
4 I am running in Qemu.

In hardware, we should note, the instruction isn’t
exactly tossed away because it’s broken in half. The
extension word, as the first half of the pair, never
really gets executed on its own; rather, it hangs
around in the pipeline to modify the subsequent in-
struction word. As the pipeline flows, the first word
becomes a bubble as the second word becomes the
single, unified instruction, but that unified instruc-
tion is too late to be executed. Instead, it is cruelly
flushed from the MIPS16 pipeline while the bible
ahead of it becomes a worthless NOP.

Thus, with just the eight byte function 0x6740
0xe820 0xf000 0x4a01, we can reliably detect em-
ulation of MIPS16. As an added bonus, IDA Pro
will agree with the simulation behavior, rather than
the hardware behavior.

– — — – — — — — – — –
Kind thanks are due to Thorsten Haas for lend-

ing us a MIPS shell account on impossibly short
notice. If you’d like to play around with more dif-
ferences between hardware and emulation, we’ll note
that in MIPS32, 0x03E00008 0x03E00008 is a clean
return to $ra on hardware, but crashes Qemu. To
crash on hardware and return normally in Qemu,
use 0x03e0f809 0x8fe20001.

Cheers from Hanover, New Hampshire,
Travis and Ryan
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15:10 Windows Kernel Race Condition Analysis While Accessing
User-mode Data

by BSDaemon and NadavCh

In 2013, Google’s researchers Mateusz Jurczyk
(J00ru) and Gynvael Coldwind released a paper en-
titled “Identifying and Exploiting Windows Kernel
Race Conditions via Memory Access Patterns.”39
They discussed race conditions in the Windows ker-
nel while accessing user-mode data and demonstrate
how to find such conditions using an instrumented
emulator. More importantly, they offered a very
thorough explanation of how the identification of
such issues is possible, specifically listing these con-
ditions of interest:
1. At least two reads of the same virtual address;
2. Both read operations take place within a short

time frame. The authors specifically recom-
mend identifying reads in the handling of a
single kernel entrance;

3. The reads must execute in kernel mode;
4. The virtual address subject to multiple reads

must reside in memory writable by Ring-3
threads, in order for the user mode to be able
to take advantage of the race.

Interestingly most of these races are
exploitable—i.e., possible for the attacker to win—
on modern machines given multiple CPU cores.
The exceptions would be in memory areas that
are administrator-owned, or in situations that are
early boot—and thus not in a memory area that
can be mapped by an attacker. Even if the user-
mode area is only writable by administrator-owned
tasks, it might still be a problem given that it leads
to code execution in kernel mode that is prohib-
ited to the administrator and bypasses kernel driver
signing. Notably, the early boot cases are only non-
exploitable if they are not part of services prohibited
after boot.

We reproduced Google’s research using Intel’s
SAE40 and got some interesting results. This paper
explains our approach in the hope of helping others
understand the importance of documenting findings
and processes. It also demonstrates other findings
and clarifies the threat model for the Windows Ker-
nel, thanks to our discussions with the MSRC. We

share all the traces that generated double fetches for
Windows 8 (pre and post booting) and Windows 10
(again, pre and post boot).41

We also share our implementation: it contains
the parameters we used for our findings, the tracer,
and the analyzer—and can be used as reference to
audit other areas of the system. It also serves as a
good way to understand the instrumentation capa-
bilities of Simics and SAE, even though these are,
unfortunately, not open-source tools.

For the findings per se, almost all parameters ap-
pear to be probed and copied to local buffers inside
of try-except blocks. We flagged them as double-
fetches because some of the pointers are probed
first and then accessed to copy out actual data,
like PUNICODE_STRING->Buffer. One of them is
not inside a try-catch block and is a local DoS,
but we do not consider it a security issue, since it
is in administrator-owned memory. Many of them
are not related to Unicode strings and are poten-
tial escalations-of-privilege (see Figure 10), but once
again, for the threat model of the Windows Kernel,
administrator-initiated attacks are out of scope.

Microsoft nevertheless fixed some of the reported
issues. Obviously, mitigations in kernel mode might
still prevent or make exploiting some of those very
difficult.

Our findings concern three classes of issues:
Admin ↔ kernel cases: Microsoft did fix these, even
though their threat model does not consider this a
security issue. They may have considered the pos-
sibility of these cases used for a CSP bypass or a
sandbox bypass—even though we did not find cases
where a sandboxed process had administrator priv-
ileges.
Local DoS cases: These were also fixed, considering
that a symlink can be created by anyone and this
was a non-admin-only case.
Other cases: The rest of the cases do not appear to
be of consequence of security. We are sharing the
traces with the community, in case anyone is inter-
ested in double-checking :)

39Mateusz Jurczyk and Gynvael Coldwind, “Identifying and Exploiting Windows Kernel Race Conditions via Memory Access
Patterns,” Google, 2013. unzip pocorgtfo15.pdf bochspwn.pdf

40Nadav Chachmon et al., “Simulation and Analysis Engine for Scale-Out Workloads,” Proceedings of the 2016 International
Conference on Supercomputing (ICS ’16), Istanbul, Turkey; unzip pocorgtfo15.pdf chachmon.pdf

41git clone https://github.com/rrbranco/kdf ; unzip pocorgtfo15.pdf kdf.zip
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Tool Description

We implemented a Kernel Double Fetch tool (KDF),
similar to the tool described in Identifying and Ex-
ploiting Windows Kernel Race Conditions via Mem-
ory Access Patterns.42 The tool has a runtime
phase, in which KDF candidates are identified, and
a post-runtime phase, in which these KDF candi-
dates are analyzed based on whether the fetches are
actually used by the kernel.

In the runtime phase, there is a ztool that looks
for system-call related instructions. When such an
instruction is triggered, the tool will dynamically
configure itself to enable memory access notifica-
tions and instruction execution notifications. When-
ever the kernel reads from the same user-space ad-
dress twice or more, the tool will generate a file that
describes the assembly instructions and the memory
access addresses. As an optimization, the tool ana-
lyzes each system call number only the first time it
is called; consecutive calls to the same system call
will not be analyzed. As correctly pointed out by
J00ru, though, this optimization can hinder the dis-
covery of some potential bugs that are only reached
under very specific conditions—and not during the
first invocation of the affected system call. The code
can be easily changed to address that concern.

After this work has completed, the KDF candi-
dates are filtered, and only if the kernel read the
memory twice or more and performed some opera-
tion based on the read, a violation will be reported.

We make the KDF ztool source code public.
You may get it from under <zsim-kit>/src/ztools
and open the Visual Studio solution. Make sure you
build an x64 version of the tool. (Look in the Vi-
sual Studio configuration.) After that you can load
the tool when you boot Win10. The tool generates
candidates for KDF in separate log file in the cur-
rent working directory. After completing the run of
the simulation you may use the kdf_analyzer. The
real KDF candidates will be located in the results
directory.

cd s r c / z t o o l s / kdf
python3 . 4 kdf_analyzer \

−id <zsim−s imics−workspace> \
− i f <kdf−v i o l a t i o n s−basename> \
−rd <r e s u l t s−d i r e c to ry>

Approach

The simulation tool is dependent on SAE, and runs
as a plugin to it. It works by loading the KDF
tool included in this paper, booting the OS, and
executing whatever test bench; the plugin will cap-
ture suspicious violations. After stopping the sim-
ulation, the KDF-analyzer scans the suspected vio-
lations recorded by the plugin and outputs the con-
firmed cases of double-fetches. Note that while these
are real double-fetches, they are not necessarily se-
curity issues.

The algorithm of the plugin works as follows. It
starts the analysis upon a SYSCALL instruction,
monitoring kernel reads from user addresses. It re-
ports a violation on two reads from the same user-
space address in the same instruction window. It
stops the KDF analysis after Instruction-Window is
reached in the same syscall scope, or upon a ring
transition.

Performance is guaranteed since each syscall is
instrumented only once and the instrumentation is
enabled only in the system call range, supported by
the tool itself.

The analyzer—responsible for post-analysis of
the potential violations—is a Python script that
manages the data flow dependencies. It adds a ref-
erence upon a copy from a suspected address to a
register/address. It removes the dependency refer-
ence upon a write to a previously referenced regis-
ter/memory, similar to a taint analysis. It reports
a violation only if two or more distinct kernel reads
happen from the same user-mode address.

We looked into the system call range 0–5081.
We dynamically executed 450 syscalls within that
range—meaning that our test bed is far from com-
pletely covering the entire range. The number of
suspected cases flagged by the plugin was 67 and
the number of violations identified was 8.

Interesting Cases

Figure 10 shows some of the interesting cases. The
Windows version was build number 10240, TH1
RTM candidate.

You will find traces extracted from our tests in
directories win10_after_boot/ and win8_after_-
boot/. As the names imply, they were collected af-
ter booting the respective Windows versions by just
using the system: opening calc, notepad, and the
recycle bin.

42http://research.google.com/pubs/pub42189.html
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API Exploitable? Why?
nt!CmOpenKey No UNICODE_STRING, Read the Unicode structure and then read the

actual string. Both are properly probed.
nt!CmCreateKey No UNICODE_STRING
nt!SeCaptureObject-
AttributeSecurity-
DescriptorPresent
nt!SeCaptureSecurity-
Qos
nt!ObpCaptureObject-
CreateInformation

No Reading and then Checking if NULL. Getting length, probing, and
then copying data

nt!EtwpTraceMessageVa No Reading, checking against NULL, probing and then copying data
nt!NtCreateSymbolic-
LinkObject

No UNICODE_STRING, May lead to Local DOS. No try-catch on user
mode address reference, at least not at the top function; it may be
deeper in the call stack

win32kbase!bPEB-
CacheHandle

No Working on addresses of PEB structure and not on pointers, try-
catch will save in case of a malformed PEB

Figure 10. Interesting cases.

The filenames include the system call
number and the address of the occurrence,
to help identify the repeated cases, e.g.,
kdf-syscall-4101.log.data_flow_0x7ffe0320,
kdf-syscall-4104.log.data_flow_0x7ffe0320,
kdf-syscall-4105.log.data_flow_0x7ffe0320.
For example, the address 0x7ffe0320 repeats in
both Win10 and Win8 traces. We kept these re-
peated traces just to facilitate the analysis.

We also include the directories results_-
win10_boot/ and result_win8_boot/, which show
the traces of interest during the boot process. These
conditions are less likely to be exploitable, but some
addresses in them repeat post-boot as well.

The format of trace files is quite straightforward,
with comments inserted for events of interest:

−−START ANALYZING KDF, ADDRESS: 0 x2 f7406 f390
−− −> Def ines the address o f i n t e r e s t

Also included are the instructions performed
during the analysis/trace:

180 : 0 x f f f f f 8 0 3650a cdd4
mov rcx , qword ptr [ rbx+0x10 ]

READ: VA = 0x2f7406f390 , LA = 0x2f7406f390 ,
PA1 = 0x79644390 , SIZE = 0x8 ,
DATA = 0 x0002 f746 f3 f 8
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The KDF detection happens on the following
commentary on the trace:
−−Data−f l ow dependency o r i g i n a t ed from
−− l i n e 180 i s used : rcx

As you can see, the commentary includes the line
at which the data-flow dependency was marked.

Our detection process begins when a syscall in-
struction is issued. While inside the call, we analyze
kernel reads from the user address space, and re-
port whenever two reads hit the same address; how-
ever, we remove references if a write is issued to the
address. We stop the analysis once an instruction
threshold is hit, or a ring transition happens.

Future Work
Leveraging our method and the toolset should make
the following tasks possible.

First, it should be possible to find multiple writes
to the same user-mode memory area in the scope of
a single system service. This is effectively the oppo-
site of the current concept of a violation. This may
potentially find instances of accidentally disclosed
sensitive data, such as uninitialized pool bytes, for
a short while, before such data is replaced with the
actual system call result.

Second, it should be possible to trace execution
of code with CPL=0 from user-mode virtual address
space, a condition otherwise detected by the SMEP
mechanism introduced in the latest Intel processors.
Similarly, it should be possible to trace execution of
code from non-executable memory regions that are
not subject to Data-Execution-Prevention, such as
non-paged pools in Windows.

Third, KDF should be studied on more operat-
ing systems.

Last but not least, other cases of cross-privilege
mode double fetches should be investigated. There
is far more work left to be done in tracing access to
find these sorts of bugs.
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for a company that
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their comfort
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15:11 X86 is Turing-Complete without Data Fetches
by Chris Domas

One might expect that to compute, we must first
somehow access data. Even the most primitive Tur-
ing tarpits generally provide some type of load and
store operation. It may come as a surprise, then,
that most modern architectures are Turing-complete
without reading data at all!

We begin with the (somewhat uninspiring) ob-
servation that the effect of any traditional data fetch
can be accomplished with a pure instruction fetch
instead.

data:
.dword 0xdeadc0de
mov eax, [data]

That fetch in pure code would be a move sourced
from an immediate value.

mov eax, 0xdeadc0de

With this, let us then model memory as an array
of “fetch cells,” which load data through instruction
fetches alone.

cell_0:
mov eax, 0xdeadc0de
jmp esi

cell_1:
mov eax, 0xfeedface
jmp esi

cell_2:
mov eax, 0xcafed00d
jmp esi

So to read a memory cell, without a data fetch,
we’ll jmp to these cells after saving a return address.
By using a jmp, rather than a traditional function
call, we can avoid the indirect data fetches from the
stack that occur during a ret.

mov esi, mret load return address
jmp cell_2 load cell 2

mret: return

A data write, then, could simply modify the im-
mediate used in the read instruction.

mov [cell_1+1], 0xc0ffee set cell 1

Of course, for a proof of concept, we should actu-
ally compute something, without reading data. As
is typical in this situation, the BrainFuck language is
an ideal candidate for implementation — our fetch
cells can be easily adapted to fit the BF memory
model.

Reads from the BF memory space are performed

through a jmp to the BF data cell, which loads
an immediate, and jumps back. Writes to the BF
memory space are executed as self modifying code,
overwriting the immediate value loaded by the data
cell. To satisfy our “no data fetch” requirement, we
should implement the BrainFuck interpreter without
a stack. The I/O BF instructions (. and ,), which
use an int 0x80, will, at some point, use data reads
of course, but this is merely a result of the Linux im-
plementation of I/O.

First, let us create some macros to help with the
simulated data fetches:

%macro simcall 1
mov esi, %%retsim
jmp %1

%%retsim:
%endmacro

%macro simfetch 2
mov edi, %2
shl edi, 3
add edi, %1
mov esi, %%retsim
jmp edi

%%retsim:
%endmacro

%macro simwrite 2
mov edi, %2
shl edi, 3
add edi, %1+1
mov [edi], eax

%%retsim:
%endmacro

Next, we’ll compose the skeleton of a basic BF
interpreter:

_start:
.execute:

simcall fetch_ip
simfetch program, eax

cmp al, 0
je .exit
cmp al, ’>’
je .increment_dp
cmp al, ’<’
je .decrement_dp
cmp al, ’+’
je .increment_data
cmp al, ’-’
je .decrement_data
cmp al, ’[’
je .forward
cmp al, ’]’
je .backward
jmp done

Then, we’ll implement each BF instruction with-
out data fetches.
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.increment_dp:
simcall fetch_dp
inc eax
mov [dp], eax
jmp .done

.decrement_dp:
simcall fetch_dp
dec eax
mov [dp], eax
jmp .done

.increment_data:
simcall fetch_dp
mov edx, eax
simfetch data, edx
inc eax
simwrite data, edx
jmp .done

.decrement_data:
simcall fetch_dp
mov edx, eax
simfetch data, edx
dec eax
simwrite data, edx
jmp .done

.forward:
simcall fetch_dp
simfetch data, eax
cmp al, 0
jne .done
mov ecx, 1

.forward.seek:
simcall fetch_ip
inc eax
mov [ip], eax
simfetch program, eax
cmp al, ’]’
je .forward.seek.dec
cmp al, ’[’
je .forward.seek.inc
jmp .forward.seek

.forward.seek.inc:
inc ecx
jmp .forward.seek

.forward.seek.dec:
dec ecx
cmp ecx, 0
je .done
jmp .forward.seek

.backward:
simcall fetch_dp
simfetch data, eax
cmp al, 0
je .done
mov ecx, 1

.backward.seek:
simcall fetch_ip
dec eax
mov [ip], eax
simfetch program, eax
cmp al, ’[’
je .backward.seek.dec
cmp al, ’]’
je .backward.seek.inc
jmp backward.seek

.backward.seek.inc:
inc ecx
jmp .backward.seek

.backward.seek.dec:
dec ecx
cmp ecx, 0
je .done
jmp .backward.seek

.done:
simcall fetch_ip
inc eax
mov [ip], eax
jmp .execute

.exit:
mov eax, 1
mov ebx, 0
int 0x80

Finally, let us construct the unusual memory
tape and system state. In its data-fetchless form,
it looks like this.
fetch_ip:

db 0xb8
ip:

dd 0
jmp esi

fetch_dp:

mov eax, xxxxxxxx

db 0xb8
dp:

dd 0
jmp esi

data:
times 30000 \

mov eax, xxxxxxxx

db 0xb8, 0, 0, 0,
0, 0xff, 0xe6, 0x90

program:
times 30000 \

mov eax, xxxxxxxx, jmp
esi, nop

db 0xb8, 0, 0, 0,
0, 0xff, 0xe6, 0x90

mov eax, xxxxxxxx, jmp
esi, nop

For brevity, we’ve omitted the I/O functionality
from this description, but the complete interpreter
source code is available.43

And behold! a functioning Turing machine on
x86, capable of execution without ever touching the
data read pipeline. Practical applications are nonex-
istent.

43git clone https://github.com/xoreaxeaxeax/tiresias || unzip pocorgtfo15.pdf tiresias.zip

88



15:12 Nail in the Java Key Store Coffin
by Tobias “Floyd” Ospelt

The Java Key Store (JKS) is Java’s way of stor-
ing one or several cryptographic private and public
keys for asymmetric cryptography in a file. While
there are various key store formats, Java and An-
droid still default to the JKS file format. JKS is one
of the file formats for Java key stores, but the same
acronym is confusingly also used the general key
store API. This article explains the security mecha-
nisms of the JKS file format and how the password
protection of the private key can be cracked. Due
to the unusual design of JKS, we can ignore the key
store password and crack the private key password
directly.

By exploiting a weakness of the Password Based
Encryption scheme for the private key in JKS, pass-
words can be cracked very efficiently. As no pub-
lic tool was available exploiting this weakness, we
implemented this technique in Hashcat to amplify
the efficiency of the algorithm with higher cracking
speeds on GPUs.

The JKS File Format

Examples and API documentation for developers
use the JKS file format heavily, without any se-
curity warnings.44 This format has been the de-
fault key store since key stores were introduced to
Java. As early as 1999, JDK 1.2 introduced the “-
much stronger” JCEKS format that uses 3DES.45
However, JKS remained the default format. Just to
mention some examples, Oracle databases and the
Apache Tomcat webserver still use the JKS format
to store their private keys.

When building an Android 7 app in the Android
Studio IDE, it will create a JKS file with which
to self-sign the app. Every application on Android
needs to be signed before it can be installed on a
device, and the phone will check that an update for
an app is signed with the same key again. The pri-
vate keys generated by Android Studio are valid for
25 years by default. Android does not offer any re-

covery mechanism to recover a lost private key, so
efficient cracking of JKS files also benefits develop-
ers who forgot their passwords.

The JKS format is due to be replaced by
PKCS12 as the default key store format in the up-
coming Java 9.46 When talking to members of
the security community who can still remember the
nineties, some seem to remember that JKS uses
some kind of weak cryptography, but nobody re-
members exactly. Let’s explore weaknesses of the
JKS file format and what an attacker needs to ex-
tract a private key in cleartext.

When a new key store is created and a new key-
pair generated, the developer has to set at least two
passwords. There is not only a password for the
key store as a whole (key store password), but each
private key in it has its own password as well (pri-
vate key password), while public keys do not have
passwords. Both passwords are used independently.
Surprisingly, the key store password is not used to
encrypt any parts of the JKS file format, it is only
used for integrity protection. This means the en-
crypted private key bytes and the cleartext bytes of
public keys in a key store can be extracted without
knowing the key store password.47 The password
of the private key however, is used to apply a cus-
tom Password Based Encryption to the private key.
Having two passwords leads to three possible cases.

In the first case, there is a password on the key
store, but no private key password is used. (In prac-
tice, the available Java APIs prevent this.) However,
in such a key store the private key would not be pro-
tected at all.

The second case is when the key store password
and the private key password are identical. This is
very common in practice and the default behavior
of most tools such as Java’s keytool command. If
no separate password for the private key is specified,
the private key password will be set to the key store
password.

In the third case, both passwords are set but the
44http://docs.oracle.com/javase/6/docs/api/java/security/KeyStore.html#getDefaultType()

http://download.java.net/java/jdk9/docs/api/java/security/KeyStore.html#getDefaultType--
https://developer.android.com/reference/java/security/KeyStore.html#getDefaultType()
http://stackoverflow.com/questions/11536848/keystore-type-which-one-to-use
http://www.pixelstech.net/article/1408345768-Different-types-of-keystore-in-Java----Overview

45See Dan Boneh’s notes on JCE 1.2 from CS255, Winter of 2000.
46http://openjdk.java.net/jeps/229
47https://gist.github.com/zach-klippenstein/4631307
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key store password is not the same as the private key
password. While not the default behavior, it is still
very common that users choose a different password
for the private key.

It is important to demonstrate that in the third
case some password crackers will crack a password
that is useless and cannot be used to access the pri-
vate key. The Jumbo version of the John the Rip-
per password cracking tool does this, cracking the
(useless) key store password rather than the private
key password. Let’s generate a key store with differ-
ent key store (storepass) and private key password
(keypass), then crack it with John:
$ keytoo l −genkey −dname \

2 ’CN=test , OU=test , O=test , L=test , S=tes t , C=CH’ \
−noprompt −a l i a s mytestkey −key s i z e 512 \

4 −keyalg RSA −keystore rsa_512 . j k s \
−s t o r epa s s 1234567 −keypass 7654321

6 $ pypy keystore2 john . py rsa_512 . j k s > keystore . txt
$ /opt/ john−1.8.0−jumbo−1/run/ john \

8 −−word l i s t=word l i s t . txt keys tore . txt
[ . . . ]

10 1234567 ( rsa_512 . j k s )
[ . . . ]

While this reveals the storepass, we cannot ac-
cess the private key with this password. My proof
of concept will crack the private key password in-
stead:48

1 $ java -jar JksPrivkPrepare.jar rsa_512.jks > privkey.txt
$ pypy jksprivk_crack.py privkey.txt

3 Password: ’7654321 ’

Naive Password Cracking
If we take the perspective of an attacker, we can con-
clude that we will not need to crack any password in
the first case to get access to the private key. In the-
ory, it also doesn’t matter which password we find
out in the second case, as both are the same. And
in the third case we can simply ignore the key store
password; we only need to crack attack the private
key password.

However, when we encounter the second case in
practice, we would like to use the most efficient

48unzip -j pocorgtfo15.pdf jksprivk/JksPrivkPrepare.jar jksprivk/jksprivk_crack.py
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password cracking technique to find the key store
password or the private key password. This means
we need to explore first how each password can be
cracked individually and which one leads to the most
efficient cracking method.

There are already several programs that will try
to crack the password of the key store:

• John the Ripper (JtR) Jumbo version49 ex-
tracts necessary information with a Python
script and the cracking is implemented in C;

• KeyStoreBrute50 tries to load the key store via
the official Java method in Java;

• KeystoreCracker51 uses the simple official Java
way in Java as well;

• keystoreBrute52 uses keytool on the com-
mand line with the storepass option (sub-
process);

• bruteforcer.py53 uses keytool on the com-
mand line with the storepass option (sub-
process);

• Patator54 uses keytool on the command line
with the storepass option (subprocess).

All these parse the JKS file format first, which
has a SHA-1 checksum at the end. They then cal-
culate a SHA-1 hash consisting of the password, the
magic “Mighty␣Aphrodite” and all bytes of the key
store file except for the checksum If the newly calcu-
lated hash matches the checksum, it was the correct
password.

No other operation with the key store password
takes place when parsing the JKS file format; there-
fore, we can conclude that this password is only used
for integrity protection. When the correct password
is guessed and it is the same as the private key pass-
word, an attacker can now decrypt the private key.

From a performance perspective, this means that
for every potential password a SHA-1 hash needs to
be calculated of nearly all bytes of the key store file.
As key stores usually hold private and public keys
of at least 512-byte length, the SHA-1 hash is cal-
culated over several thousand bytes of input. To

summarize, the effort to check one password for va-
lidity is roughly:

SHA-1( <password>
"Mighty Aphrodite"

?= Keystore

Keys
Checksum

(
It is also important to emphasize again that the

above implementations will waste CPU time if the
key store password is not identical to the private
key password (third case) and are not attempting
to crack the password necessary to extract the pri-
vate key.

There are also implementations that crack the
password of the private key directly:

• android-keystore-recovery55 tries to decrypt
the entire private key with each password, in
Scala;

• android-keystore-password-recover56 tries to
decrypt the entire private key with each pass-
word, in Java.

These implementations have in common that
they parse the JKS file format, but then only ex-
tract the entry of the encrypted private keys. For
each private key entry, the first 20 bytes serve as an
Initialization Vector and the last 20 bytes are again
a checksum. The implementations then calculate
a keystream. The keystream starts as the SHA-1
hash of the password plus IV. For every 20 bytes of
the encrypted private key, the next 20 bytes of the
keystream are calculated as the SHA-1 of the pass-
word plus previous keystream block (of 20 bytes).
The encrypted private key bytes are then XORed
with the keystream to get the private key in clear-
text. This is a custom Password Based Encryption
(PBE) scheme with chaining. As a last step, the
cleartext private key is SHA-1 hashed again and
compared to the checksum that was extracted from
the JKS private key entry. Therefore, the effort to
check one password for validity is roughly:

49http://www.openwall.com/lists/john-users/2015/06/07/3
50git clone https://github.com/bes/KeystoreBrute
51git clone https://github.com/jeffers102/KeystoreCracker
52git clone https://github.com/volure/keystoreBrute
53https://gist.github.com/robinp/2143870
54https://www.darknet.org.uk/2015/06/patator-multi-threaded-service-url-brute-forcing-tool/
55https://github.com/rsertelon/android-keystore-recovery
56https://github.com/MaxCamillo/android-keystore-password-recover
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Efficient Password Cracking

From a naive perspective, it was not analyzed which
of these algorithms would be more efficient for pass-
word cracking.57 However, an article on Cryp-
tosense.com was published in 201658 and didn’t
seem to get the attention it deserves. It points out
that for the private key password cracking method it
is not necessary to calculate the entire keystream to
reject an invalid password. As the cleartext private
key will be a DER encoded file format, the first SHA-
1 calculation of password plus IV with the XOR op-
eration is sufficient to check if a password candidate
could potentially lead to a valid DER encoded pri-
vate key. These all miss out on this optimization
and therefore do too many SHA-1 calculations for
every password candidate.

It turns out, it is even possible to pre-calculate
the XOR operation. For each password candidate
only one SHA-1 hash needs to be calculated, then
some bytes of the result have to be compared to
the pre-calculated bytes. If the bytes are identi-
cal, this proves that the password might decrypt the
key to a DER format. Practical tests showed that
a DER encoded RSA private key in cleartext will
start with 0x30 and bytes at index six to nineteen
will be 0x00300d06092a864886f70d010101. Simi-
lar fingerprints exist for DSA and EC keys. These
bytes we expect in a DER encoded private key can
be XORed with the corresponding encrypted private

key bytes to precalculate the SHA-1 output bytes we
are looking for.

This means, the cracking can be optimized to use
a more efficient two-step cracking algorithm to crack
the private key password. After parsing the JKS file
format and precalculating the necessary values, we
have the following optimized algorithm:

0. Choose a password in pseudo UTF-16, mean-
ing that a null byte is added to every character.

1. keystream = SHA-1(password + STATIC_-
20_BYTES_IV_FROM_PRIVKEY_ENTRY)

2. Check if bytes at index 0 and 6 to 19 of the
keystream correspond to PRECOMPUTED_15_-
BYTES_DER_PROOF. If they are not the same,
go to step 0.

3. Let keybytes be every 20 bytes of STATIC_-
VARIABLE_LEN_ENCRYPTED_BYTES_FROM_-
PRIVKEY_ENTRY.

4. For each keybytes:

(a) key += keystream ⊕ keybytes

(b) keystream = SHA-1(password‖keystream)

5. checksum = SHA-1(password‖key)

6. Check if checksum is STATIC_20_BYTES_-
CHECKSUM_FROM_PRIVKEY_ENTRY. If they are
the same, key is the private key in cleartext
and we can stop. Otherwise, go to step 0.

As practical tests will later indicate, step 3 is
typically never reached with an incorrect password
during cracking and all passwords can be rejected
early. In fact, Hashcat only implements steps 0 to
3, as the probability that a wrong candidate is ever
found is neglectible (1/2120)!

Implementation

The parsing of the file format and extraction of the
precomputed values for cracking were implemented
as a standalone JAR Java version 8 command line
application JksPrivkPrepare.jar. The script will

57While the key store calculations must do the single SHA-1 over all bytes of the public and private keys in the key store,
the private key calculations are many more SHA-1 calculations but with less bytes as inputs.

58Might Aphrodite – Dark Secrets of the Java Keystore
59Running much faster with the PyPy Python implementation rather than CPython. The script works without further de-

pendencies. However, another script in the benchmark section needs the numpy packet. It has to be installed for PyPy. The
easiest way of installing is usually via PIP: pypy -m pip install numpy
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1 $ keytoo l −genkey −dname ’CN=tes t , OU=tes t , O=tes t , L=te s t , S=te s t , C=CH’ −noprompt \
−a l i a s mytestkey −key s i z e 512 −keya lg RSA −keys to r e rsa_512_123456 . j k s \

3 −s t o r epa s s 123456 −keypass 123456
$ java − j a r JksPrivkPrepare . j a r rsa_512_123456 . j k s > privkey_123456 . txt

5 $ pypy −m cP r o f i l e −s tot t ime jkspr ivk_naive_crack . py privkey_123456 . txt
Password : ’ 123456 ’

7 10278681 func t i on c a l l s (10277734 p r im i t i v e c a l l s ) in 9 .763 seconds
[ . . . ]

9 n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno ( func t i on )
123457 2 .944 0 .000 2 .944 0 .000 jkspr ivk_naive_crack . py : 1 4 ( xor )

11 2345683 1 .651 0 .000 1 .651 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }
2345684 1 .608 0 .000 1 .608 0 .000 {_hashlib . openssl_sha1 }

13 2345683 1 .491 0 .000 5 .266 0 .000 jkspr ivk_naive_crack . py : 1 9 ( get_keystream )
[ . . . ]

15 $ pypy −m cP r o f i l e −s tot t ime jkspr ivk_crack . py privkey_123456 . txt
Password : ’ 123456 ’

17 649118 func t i on c a l l s (648171 p r im i t i v e c a l l s ) in 0 .438 seconds
[ . . . ]

19 n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno ( func t i on )
123476 0 .086 0 .000 0 .086 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }

21 123477 0 .067 0 .000 0 .067 0 .000 {_hashlib . openssl_sha1 }
1 0 .056 0 .056 0 .293 0 .293 jkspr ivk_crack . py : 5 4 ( get_candidates )

23 14 0 .055 0 .004 0 .486 0 .035 __init__ . py:1(<module>)
[ . . . ]

Figure 11. Java Key Store with a Short Password

prepare the precomputed values for a given JKS file
and outputs it as asterix separated values.

As a PoC, a Python script jksprivk_crack.py59
was implemented to do the actual cracking of the
private key password. To put a final nail in the cof-
fin of the JKS format, it is important to enable the
security community to do efficient password crack-
ing.60 To optimize cracking speed, Jens “atom”
Steube — developer of the Hashcat password recov-
ery program — implemented the cracking step in
GPU optimized code. Hashcat takes the same ar-
guments as the Python cracking script. As hashcat
uses a weakness in SHA-1,61 the cracking speed on
a single NVidia GTX 1080 GPU reaches around 7.8
(stock clock) to 8.5 (overclocked) billion password
tries per second.62 This allows to try all alphanu-
meric passwords (uppercase, lowercase, numbers) of
length eight in about eight hours on a single GPU.

_____: _____________ _____: v3.6.0 ____________
_\ |__\______ _/_______ _\ |_____ _______\______ /__ ______
| _ | __ \ ____/____ _ | ___/____ __ |_______/
| | | \ _\____ / | | \ / \ | |
|_____| |______/ / /____| |_________/_________: |

|_____:-aTZ!/___________/ |_____: /_______:

* BLAKE2 * BLOCKCHAIN2 * DPAPI * CHACHA20 * JAVA KEYSTORE * ETHEREUM WALLET *

Benchmarking

When doing a benchmark, it is important to try
to measure the actual algorithm and not some inef-
ficiency of the implementation. Some simple mea-
surements were done by implementing the described
techniques in Python. All the mentioned resources
are available in the feelies.63 Let’s first look at
the naive implementation of the private key cracker
jksprivk_naive_crack.py versus the efficient pri-
vate key cracking algorithm jksprivk_crack.py.
Let’s generate a test JKS file first. We can generate
a small 512-byte RSA key pair with the password
123456, then crack it with both implementations.
Both implementations only try numeric passwords,
starting with length 6 password 000000 and incre-
menting, as in Figure 11.

These measurements show that a lot more calls
to the update and digest function of SHA-1 are nec-
essary to crack the password in the naive script. If
the keysize of the private key in the JKS store is big-
ger, the time difference is even greater. Therefore,
we conclude that our efficient cracking method is far

60The Python script only reaches around 220,000 password-tries per second when run with PyPy on a single 3-GHz CPU.
61https://hashcat.net/events/p12/js-sha1exp_169.pdf
62git clone https://github.com/hashcat/hashcat
63unzip -j pocorgtfo15.pdf jksprivk/jksprivk_resources.zip
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$ keytoo l −genkey −dname ’CN=tes t , OU=tes t , O=tes t , L=te s t , S=te s t , C=CH’ −noprompt \
2 −a l i a s mytestkey −key s i z e 512 −keya lg RSA −keys to r e rsa_512_12345678 . j k s \

−s t o r epa s s 12345678 −keypass 12345678
4 $ java − j a r JksPrivkPrepare . j a r rsa_512_12345678 . j k s > privkey_12345678 . txt

$ pypy −m cP r o f i l e −s tot t ime jkspr ivk_crack . py privkey_12345678 . txt
6 Password : ’ 12345678 ’

116760228 func t i on c a l l s (116759281 p r im i t i v e c a l l s ) in 60 .009 seconds
8 [ . . . ]

n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno ( func t i on )
10 23345699 16 .940 0 .000 16 .940 0 .000 {_hashlib . openssl_sha1 }

23345698 16 .082 0 .000 16 .082 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }
12 23345775 10 .971 0 .000 10 .972 0 .000 {method ’ j o i n ’ o f ’ s t r ’ o b j e c t s }

1 8 .560 8 .560 59 .851 59 .851 jkspr ivk_crack . py : 5 4 ( get_candidates )
14 23345698 4 .024 0 .000 4 .024 0 .000 {method ’ update ’ o f ’HASH’ ob j e c t s }

23345679 3 .274 0 .000 14 .245 0 .000 jkspr ivk_crack . py : 9 1 ( next_brute_force_token )
16 [ . . . ]

$ pypy /opt/ john−1.8.0− jumbo−1/run/ keys tore2 john . py rsa_512_12345678 . j k s \
18 > keystore_12345678 . txt

$ pypy −m cP r o f i l e −s tot t ime jkskeys tore_crack . py keystore_12345678 . txt
20 Password : ’ 12345678 ’

163420866 func t i on c a l l s in 84 .719 seconds
22 [ . . . ]

n c a l l s tot t ime p e r c a l l cumtime p e r c a l l f i l ename : l i n eno ( func t i on )
24 70037037 33 .712 0 .000 33 .712 0 .000 {method ’ update ’ o f ’HASH’ ob j e c t s }

23345679 17 .780 0 .000 17 .780 0 .000 {method ’ d i g e s t ’ o f ’HASH’ ob j e c t s }
26 23345680 12 .022 0 .000 12 .022 0 .000 {_hashlib . openssl_sha1 }

23345682 9 .679 0 .000 9 .679 0 .000 {method ’ j o i n ’ o f ’ s t r ’ o b j e c t s }
28 1 8 .482 8 .482 84 .716 84 .716 jkskeys tore_crack . py : 1 4 ( crack_password )

23345679 3 .042 0 .000 12 .721 0 .000 jkskeys tore_crack . py : 2 6 ( next_brute_force_token )
30 [ . . . ]

Figure 12. Java Key Store with a Longer Password
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more suitable.
Now we still have to compare the efficient crack-

ing of the private key password with the cracking of
the key store password. The algorithm for key store
password cracking was also implemented in Python:
jkskeystore_crack.py. It takes a password file as
argument like John the Ripper does. As these imple-
mentations are more efficient, let’s generate a new
JKS with a longer password, as shown in Figure 12.

In this profile, we see that the update method of
the SHA-1 object when cracking the key store takes
much longer to return and is called more often, as
more data goes into the SHA-1 calculation. Again,
the efficient cracking algorithm for the private key
is faster and the difference is even bigger for bigger
key sizes

So far we tried to compare techniques in Python.
As they use the same SHA-1 implementation, the
benchmarking was kind of fair. Let’s compare two
vastly different implementations, the efficient al-
gorithm jksprivk_crack.py to John the Ripper.
First, create a wordlist for John with the same nu-
meric passwords as the Python script will try, then
run the comparison shown in Figure 13.

That figure shows that John is faster for 512-bit
keys, but as soon as we grow to 1024-bit keys in Fig-
ure 14, we see that our humble little Python script
wins the race against John. It’s faster, even without
John’s fancy C code or optimizations!

As John the Ripper needs to do SHA-1 opera-
tions for the entire key store content, the Python
script outperforms John the Ripper. For larger key
sizes, the difference is even bigger.

These benchmarks were all done with CPU cal-
culations and Hashcat will use performance opti-
mized GPU code and Markov Chains for password
generation. Cracking a JKS with private key pass-
word POC||GTFO on a single overclocked NVidia
GTX 1080 GPU is illustrated on Figure 15.

Neighborly Greetings
Neighborly greetings go out to atom, vollkorn, cem,
doegox, ange, xonox and rexploit for supporting this
article in one form or another
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$ keytoo l −genkey −dname ’CN=tes t , OU=tes t , O=tes t , L=te s t , S=te s t , C=CH’ −noprompt \
2 −a l i a s mytestkey −key s i z e 512 −keya lg RSA −keys to r e rsa_512_12345678 . j k s \

−s t o r epa s s 12345678 −keypass 12345678
4 $ java − j a r JksPrivkPrepare . j a r rsa_512_12345678 . j k s > privkey_12345678 . txt

$ time pypy jkspr ivk_crack . py privkey_12345678 . txt
6 Password : ’ 12345678 ’

54 .96 r e a l 53 .76 user 0 .71 sys
8 $ pypy /opt/ john−1.8.0− jumbo−1/run/ keys tore2 john . py rsa_512_12345678 . j k s \

> keystore_12345678 . txt
10 $ time /opt/ john−1.8.0− jumbo−1/run/ john −−word l i s t=word l i s t . txt keystore_12345678 . txt

[ . . . ]
12 12345678 ( rsa_512_12345678 . j k s )

[ . . . ]
14 42 .28 r e a l 41 .55 user 0 .33 sys

Figure 13. John the Ripper is faster for 512-byte keystores.

$ time pypy jkspr ivk_crack . py privkey_12345678 . txt
2 Password : ’ 12345678 ’

58 .17 r e a l 56 .36 user 0 .84 sys
4 $ time /opt/ john−1.8.0− jumbo−1/run/ john −−word l i s t=word l i s t . txt keystore_12345678 . txt

[ . . . ]
6 12345678 ( rsa_1024_12345678 . j k s )

[ . . . ]
8 64 .60 r e a l 62 .96 user 0 .57 sys

Figure 14. For 1024-bit keystores, our script is faster (full output in the feelies).

$ . / hashcat −m 15500 −a 3 −1 ’ ?u | ’ −w 3 hash . txt ?1?1?1?1?1?1?1?1?1
2 hashcat ( v3 . 6 . 0 ) s t a r t i n g . . .

[ . . . ]
4 ∗ Device #1: GeForce GTX 1080 , 2026/8107 MB a l l o c a t ab l e , 20MCU

[ . . . ]
6 $ j k sp r i vk$ ∗D1BC102EF5FE5F1A7ED6A63431767DD4E1569670 . . . 8 ∗ t e s t :POC| |GTFO

[ . . . ]
8 Speed . Dev . # 1 . . . . . : 7946 .6 MH/ s (39 . 48ms)

[ . . . ]
10 Started : Tue May 30 17 : 41 : 56 2017

Stopped : Tue May 30 17 : 50 : 24 2017

Figure 15. Cracking session on a NVidia GTX 1080 GPU.
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15:13 The Gamma Trick: Two PNGs for the price of one
by Hector Martin ‘marcan’

Say you’re browsing your favorite hypertext-
encoded, bitmap-containing visuo-lingual informa-
tion distribution medium. You come across an
image which—as we do not yet live in an era of
infinitely scalable resolution—piques your interest
yet is presented as a small thumbnail. Why are they
called thumbnails, anyway?

1
Don't click on me.  (i.redd.it)

submitted 3 days ago by marcan42  to r/test
2 comments share

Despite the clear instructions not to do so, you
resolve to click, tap, press enter, or otherwise engage
with the image. After all, you have been conditioned
to expect that such an action will yield a higher-
quality image through some opaque and clearly in-
comprehensible process.

Yet the image now appearing before your eyes
is not the same image that you clicked on. Curses!
What is this sorcery? Have I been fooled? Is this
alien technology? Did someone hack Reddit?

The first time I came across this technique was
a few years ago on a post on 4chan. Despite the
fact that the image was not just lewd but downright
unsavory to my taste, I have to admit I spent quite
some time analysing exactly what was going on in
detail. I have since seen this trick used a few times
here and there, and indeed I’ve even used a variant
of it myself in a CTF challenge. Thanks go to my
friend @Miluda for giving me permission to use her
art in this article’s examples.

So, do tell, what is going on? It all has to do with
the PNG format. Like most image formats, PNG

images carry metadata. That metadata includes in-
formation about how the image, and in particular
color information, is itself encoded. The PNG for-
mat can specify how RGB values map to how much
light comes out of the pixels on your screen in several
ways, but one of the simplest is the ‘gAMA’ chunk
which specifies the gamma value of the image, γ.

Intuitively, you’d think that a pixel with 50%
brightness would be encoded as a 0.5 value (or about
0x7f, in an 8-bit format), but that is not the case.
Due to a series of historical circumstances and prac-
tical coincidences too long-winded to be worth going
into, pixel brightness values are not linear. Instead,
they are stored as the brightness value raised to a
power γ. The most common default is γ = 0.4545.
When the image is displayed, the pixels are raised to
the inverse gamma, 2.2, to obtain the linear bright-
ness value.64 This is typically done by your monitor.
Thus, 50% brightness is actually encoded as 0.73, or
0xba. PNG images can specify an alternate γ value,
and your PNG decoder is responsible for converting
it to the correct display gamma.

Like every other optional feature of every other
file format, whether this is actually implemented is
anyone’s guess. As it turns out, most web browsers
implement it properly, and most image processing
libraries do not. Many websites use these to cre-
ate thumbnails: Reddit, 4chan, Imgur, Google Docs.
We can use this to our advantage.

Take one source image and darken it (map its
brightness range to 0%..80%). Take the other source
image, and lighten it (map its brightness range to
80%..100%). The two images now occupy distinct
portions of the brightness gamut. Now, for every
2x2 group of pixels, take 3 pixels of the darker im-
age and 1 pixel of the lighter image. Finally, encode
the result as a PNG and apply the gAMA PNG tag,
using an extreme value such as γ=0.0227. (Twenty
times lower than the default γ=0.4545.)

64Most computers these days use, or at least claim to support, the sRGB colorspace, which doesn’t actually use a pure gamma
function for a bunch of technical reasons. But it approximates γ = 2.2, so we’re rolling with that.
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We can do this easily enough with ImageMagick:

1 $ size=$(convert "$high" -format "%wx%h" info:)
$ convert \( "$low" -alpha off +level 0%,80% \) \

3 \( "$high" -alpha off +level 80% ,100% \) \
-size $size pattern:gray25 -composite \

5 -set gamma 0.022727 \
-define png:include -chunk=none ,gAMA \

7 "$output"

When viewed without the specified gamma cor-
rection, all of the lighter pixels (25% of the image)
approach white and the overall image looks like a
washed out version of the darker source image (75%
of the image). The 2 × 2 pixel pattern disappears
when the image is downscaled to less than half of
its original dimensions (if the scaler is any good
anyway). When the gamma correction is applied
to the original image, however, all the darker pix-
els are crushed to black, and now the lighter pixels
span most of the brightness spectrum, revealing the
lighter image as a grid of bright pixels against a
black background. If the image is displayed at 1:1
pixel scale, it will look quite clean. Scales between
100% and 50% typically result in moiré artifacts,
because most scalers cheat. Scaling down usually
darkens the image, because most scalers also don’t
do gamma-correct scaling.65

γ = 0.4545 γ = 0.0227

This approach is the one I’ve seen used so far,
and it is easy to achieve using the Levels tool in
GIMP, but we can do better. The second image is
much too dark: we’re mapping the image to a lin-
ear brightness range, but then applying a very much
non-linear gamma correction. Also, in the first im-
age, we can see a “halo” of the second image, since
the information is actually there. We can fix these
issues.

Let’s use ImageMagick again. First we’ll apply
a true gamma adjustment to the high source image.
The -gamma operation in ImageMagick performs an
adjustment by the inverse of the supplied value, so
to apply an adjustment of γ = 1/20 we’ll pass in 20.
We’ll also slightly increase its brightness, to ensure
that after gamma adjustment the pixels are close
enough to white:

1 $ convert "$high" -alpha off +level 3.5% ,100% \
-gamma 20 high_gamma.png

This effectively maps the image range to
0.0350.05 = 0.846..1.0, but with a non-linear gamma
curve. Next, because the low image will appear
washed out, we’ll apply a gamma of 0.8, then darken
it to 77% of its original brightness. 0.7720 = 0.005,
which is dark enough to not be noticeable. We’re
keeping this in a variable to chain later.
$ low_gamma="-alpha off -gamma 0.8 +level 0% ,77%"

Now let’s compensate for the halo caused by the
high image. For every 2x2 output pixels, we’d like
an average color of:

v = 3/4vlow + 1/4

That is, as if the high image was completely
white. What we actually have is:

v = 3/4v′low + 1/4vhigh

Solving for v′low gives:

v′low = vlow − 1/3vhigh + 1/3

We can implement this in ImageMagick using
-compose Mathematics:

1 $ convert \( "$low" $low_gamma \) high_gamma.png \
-compose Mathematics \

3 -define compose:args=’0,-0.33,1,0.33’ \
-composite low_adjusted.png

65Note that gamma-correct scaling is orthogonal to the gamma trick used here. A simple black-and-white checkerboard should
be downscaled to a solid 0.73 gray (half the photons, or 50% brightness, at γ = 0.4545), but most scalers just average it down
to 0.5, which is wrong. GIMP is one of the few apps that does gamma-correct scaling these days. Isn’t gamma fun?
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There will be some slight edge effects, due to
aliasing issues between the chosen pixels from both
images, but this will remove any blatant solid halo
areas. This correction assumes that the thumbnail
scaler does not perform gamma-correct scaling,65
which is the common case. This means it is incorrect
if the output image is viewed at 1:1 scale (the halo
will be visible), but once scaled down it will disap-
pear. In order to cater for gamma-correct scalers (or
1:1 viewing), we’d have to perform the adjustment
in a linear colorspace.

Finally, we just compose both images together
with a pattern as before:
$ convert low_adjusted.png high_gamma.png \

2 -size $size pattern:gray25 \
-composite -set gamma 0.022727 \

4 -define png:include -chunk=none ,gAMA \
"$output"

The result is much better.

γ = 0.4545 γ = 0.0227

The previous images in this article have been fil-
tered (2× 2 box blur) to remove the high-frequency
pixel pattern, in order to approximate how they
would visually appear in a browser context without
relying on the specific scaling/resampling behavior
of your PDF renderer. In fact, the filtering method
varies: gamma-naive for simulating thumbnailing,
gamma-aware for simulating the true response at
1:1 scale. For your amusement, here are the raw im-
ages. Their appearance will depend on exactly what
kind of filtering, scaling, or other processing is ap-
plied when the PDF is rasterized. Feel free to play
with your zoom setting.

γ = 0.4545 γ = 0.0227

Yup, it’s 2017 and most software still can’t
up/downscale images properly. Now don’t get me
started on the bane that is non-premultiplied alpha,
but that’s a topic for another day
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15:14 Laphroaig’s Home for Unwanted Polyglots and 0day
from the desk of Pastor Manul Laphroaig,

International Church of the Weird Machines

Dearest neighbor,
If you enjoyed reading this little tract, I have

some good news and a polite request for you.
Thanks to the fine folks at No Starch Press, our

768 page Book of PoC‖GTFO is sailing on its merry
way across the Pacific ocean!66 It includes full color
file format illustrations by Ange Albertini, as well
as every article from our first nine releases on thin
paper with gold trim, faux leather binding, and a
ribbon to keep your place. Each article has been
revised, indexed, and cross referenced.

But today I’m writing to ask for your offering.
Not an offering of money, but on offering of writing.
Send me your proofs of concept!

Do this: write an email telling our editors how
to reproduce ONE clever, technical trick from your
research. If you are uncertain of your English, we’ll
happily translate from French, Russian, Southern
Appalachian, and German. If you don’t speak those
languages, we’ll draft a translator from those poor
sods who owe us favors.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick reminder would do.

Just use 7-bit ASCII if your language doesn’t
require funny letters, as whenever we receive some-
thing typeset in OpenOffice, we briefly mistake it
for a ransom note. 8-bit ASCII is also acceptable if
generated on TempleOS. Don’t try to make it thor-
ough or broad. Don’t use bullet-points, as this isn’t
a damned Buzzfeed listicle. Keep your code samples
short and sweet; we can leave the long-form code as
an attachment. Do not send us LATEX; it’s our job
to do the typesetting!

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

66Preorders accepted at http://nostarch.com/gtfo
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